Laccase biosensor using magnetic multiwalled carbon nanotubes and chitosan/silica hybrid membrane modified magnetic carbon paste electrode

Ya Pang , Guang-ming Zeng , Lin Tang , Yi Zhang , Zhen Li , Li-juan Chen

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (6) : 1849 -1856.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (6) : 1849 -1856. DOI: 10.1007/s11771-011-0913-1
Article

Laccase biosensor using magnetic multiwalled carbon nanotubes and chitosan/silica hybrid membrane modified magnetic carbon paste electrode

Author information +
History +
PDF

Abstract

A simple and rapid strategy to construct laccase biosensor for determination of catechol was investigated. Magnetic multiwalled carbon nanotubes (MMCNT) which possess excellent capability of electron transfer were prepared by chemical coprecipitation method. Scanning electron microscope (SEM) and vibrating sample magnetometer (VSM) were used to identify its surfacetopography and magnetization, respectively. Laccase was immobilized on the MMCNT modified magnetic carbon paste electrode by the aid of chitosan/silica (CS) hybrid membrane. Using current-time detection method, the biosensor shows a linear response related to the concentration of catechol in the range from 10−7 to 0.165×10−3 mol/L. The corresponding detection limit is 3.34×10−8 mol/L based on signal-to-noise ratios (S/N) ≥3 under the optimized conditions. In addition, its response current retains 90% of the original after being stored for 45 d. The results indicate that this proposed strategy can be expected to develop other enzyme-based biosensors.

Keywords

magnetic multiwalled carbon nanotubes / paramagnetism / chitosan/silica sol / laccase biosensor / catechol

Cite this article

Download citation ▾
Ya Pang, Guang-ming Zeng, Lin Tang, Yi Zhang, Zhen Li, Li-juan Chen. Laccase biosensor using magnetic multiwalled carbon nanotubes and chitosan/silica hybrid membrane modified magnetic carbon paste electrode. Journal of Central South University, 2011, 18(6): 1849-1856 DOI:10.1007/s11771-011-0913-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

VarsamisD. G., TouloupakisE., MorlacchiP., GhanotakisD. F., GiardiM. T., CullenD. C.. Development of a photosystem II-based optical microfluidic sensor for herbicide detection [J]. Talanta, 2008, 77(1): 42-47

[2]

TangL., ZengG.-m., ShenG.-l., LiY.-p., LiuC., LiZhen.. Sensitive detection of lip genes by electrochemical DNA sensor and its application in polymerase chain reaction amplicons from phanerochaete chrysosporium [J]. Biosensor and Bioelectronics, 2009, 24(5): 1474-1479

[3]

WangS. G., QingZ.-g., WangR.-l., YoonS. F.. A novel multi-walled carbon nanotube-based biosensor for glucose detection [J]. Biochemical and Biophysical Research Communications, 2003, 311(3): 572-576

[4]

TangL., ZengG.-m., ShenG.-l., LiY.-p., ZhangY., HuangD.-lian.. Rapid detection of picloram in agricultural field samples using a disposable immunomembranebased electrochemical sensor [J]. Environmental Science and Technology, 2008, 42(4): 1207-1212

[5]

TkacJ., NavratilM., SturdikE., GemeinerP.. Monitoring of dihydroxyacetone production during oxidation of glycerol by immobilized Gluconobacter oxydans cells with an enzyme biosensor [J]. Enzyme and Microbial Technology, 2001, 28(4/5): 383-388

[6]

CrespilhoF. N., GhicaM. E., CaridadeC. G., OliveiraO. N. J., BrettC. M. A.. Enzyme immobilization on electroactive nanostructured membranes (ENM): Optimised architectures for biosensing [J]. Talanta, 2008, 76(4): 922-928

[7]

FreireR. S., DuranN., KubotaL. T.. Effects of fungal laccase immobilization procedures for the development of a biosensor for phenol compounds [J]. Talanta, 2001, 54(4): 681-686

[8]

FuG.-l., YueX.-l., DaiZ.-fei.. Glucose biosensor based on covalent immobilization of enzyme in sol-gel composite film combined with Prussian blue/carbon nanotubes hybrid [J]. Biosensors and Bioelectronics, 2011, 26(9): 3973-3976

[9]

TiwariA., AryalS., PillaS., GongS. Q.. An amperometric urea biosensor based on covalently immobilized urease on an electrode made of hyperbranched polyester functionalized gold nanoparticles [J]. Talanta, 2009, 78(4/5): 1401-1407

[10]

GuerrieriA., BenedettoG. E., PalmisanoF., ZamboninP. G.. Electrosynthesized non-conducting polymers as permselective membranes in amperometric enzyme electrodes: A glucose biosensor based on a co-crosslinked glucose oxidase/overoxidized polypyrrole bilayer [J]. Biosensor and Bioelectronics, 1998, 13(1): 103-112

[11]

BarbadilloM., CaseroE., PetitD. M. D., VazquezL., ParienteF., LorenzoE.. Gold nanoparticles-induced enhancement of the analytical response of an electrochemical biosensor based on an organic-inorganic hybrid composite material [J]. Talanta, 2009, 80(1): 797-802

[12]

LiY., LiuX.-y., YuanH.-y., XiaoDan.. Glucose biosensor based on the room-temperature phosphorescence of TiO2/SiO2 nanocomposite [J]. Biosensor and Bioeletronics, 2009, 24(12): 3706-3710

[13]

RossiA. M., WangL. L., RabbiV., MurphyT. E.. Porous silicon biosensor for detection of viruses [J]. Biosensor and Bioelectronics, 2007, 23(5): 741-745

[14]

LuaisE., ThobieG. C., TailleurA., DjouadiM. A., GranierA., TessierP. Y., DebarnotD., PoncinE. F., BoujtitaM.. Preparation and modification of carbon nanotubes electrodes by cold plasmas processes toward the preparation of amperometric biosensors [J]. Electrochimica Acta, 2010, 55(26): 7916-7922

[15]

DengC.-y., ChenJ.-h., NieZ., SiS.-hui.. A sensitive and stable biosensor based on the direct electrochemistry of glucose oxidase assembled layer-by-layer at the multiwall carbon nanotube-modified electrode [J]. Biosensors and Bioelectronics, 2010, 26(1): 213-219

[16]

WisitsoraatA., SritongkhamP., KaruwanC., PhokharatkulD., MaturosT., TuantranontA.. Fast cholesterol detection using flow injection microfluidic device with functionalized carbon nanotubes based electrochemical sensor [J]. Biosensors and Bioelectronics, 2010, 26(4): 1514-1520

[17]

ZhangY., ZengG.-m., TangL., HuangD.-l., JiangX.-y., NiuC.-gang.. A hydroquinone biosensor using modified core-shell magnetic nanoparticles supported on carbon paste electrode [J]. Biosensor and Bioelectronics, 2007, 22(9/10): 2121-2126

[18]

HoK. C., TsaiP. Y., LinY. S., ChenY. C.. Using biofunctionalized nanoparticles to probe pathogenic bacteria [J]. Analytical Chemistry, 2004, 76(24): 7162-7168

[19]

KouassiG. K., IrudayarajJ.. Magnetic and gold-coated magnetic nanoparticles as a DNA sensor [J]. Analytical Chemistry, 2006, 78(10): 3234-3241

[20]

LiangY.-y., ZhangL.-ming.. Bioconjugation of papain on superparamagnetic nanoparticles decorated with carboxymethylated chitosan [J]. Biomacromolecules, 2007, 8(5): 1480-1486

[21]

LiuY., LeiJ.-p., JuH.-xian.. Amperometric sensor for hydrogen peroxide based on electric wire composed of horseradish peroxidase and toluidine blue-multiwalled carbon nanotubes nanocomposite [J]. Talanta, 2008, 74(4): 965-970

[22]

QuS., WangJ., KongJ.-l., YangP.-y., ChenGuang.. Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing [J]. Talanta, 2007, 71(3): 1096-1102

[23]

YanX.-x., PangD.-w., LuZ.-x., LuJ.-q., TongHua.. Electrochemical behavior of L-dopa at single-wall carbon nanotube-modified glassy carbon electrodes [J]. Journal of Electroanalytical Chemistry, 2004, 569(1): 47-52

[24]

SanthoshP., ManeshK. M., GopalanA., LeeK. P.. Fabrication of a new polyaniline grafted multi-wall carbon nanotube modified electrode and its application for electrochemical detection of hydrogen peroxide [J]. Analytica Chimica Acta, 2006, 575(1): 32-38

[25]

WuF.-h., ZhaoG.-c., WeiX.-wen.. Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode [J]. Electrochemistry Communications, 2002, 4(9): 690-694

[26]

QuS.-c., YangH.-b., RenD.-w., KanS.-h., ZouG.-tian.. Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions [J]. Journal of Colloid and Interface Science, 1999, 215(1): 190-192

[27]

ZhangM.-g., GorskiW.. Electrochemical sensing based on redox mediation at carbon nanotubes [J]. Analytical Chemistry, 2005, 77(13): 3960-3965

[28]

YangD.-p., JiH.-f., TangG.-y., RenW., ZhangH.-yu.. How many drugs are catecholics [J]. Molecules, 2007, 12(4): 878-884

[29]

SiesH.. Oxidative stress: Oxidants and antioxidants [J]. Experimental physiology, 1997, 82(7): 291-295

[30]

YanngS.-m., LiY.-m., JiangX.-m., ChenZ.-c., LinX.-fu.. Horseradish peroxidase biosensor based on layer-by-layer technique for the determination of phenolic compounds [J]. Sensors and Actuators B: Chemical, 2006, 114(2): 774-780

[31]

KochanaJ., NowakP., WilkolazkaA. J., BierońM.. Tyrosinase/laccase bienzyme biosensor for amperometric determination of phenolic compounds [J]. Microchemical Journal, 2008, 89(2): 171-174

[32]

TembeS., InamdarS., HaramS., KarveM., SouzS. F.. Electrochemical biosensor for catechol using agarose-guar gum entrapped tyrosinase [J]. Journal of Biotechnology, 2007, 128(1): 80-85

[33]

WangS.-f., TanY.-m., ZhaoD.-m., LiuG.-dong.. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitosan nanocomposite [J]. Biosensor and Bioelectronics, 2008, 23(12): 1781-1787

[34]

BanksC. E., ComptonR. G.. Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: An edge plane pyrolytic graphite electrode study [J]. Analyst, 2005, 130(9): 1232-1239

[35]

JiaJ.-b., WangB.-q., WuA.-g., ChengG.-j., LiZ., DongS.-jun.. A method to construct a third-generation horseradish peroxidase biosensor: Self-assembling gold nanoparticles to three-dimensional sol-gel network [J]. Analytical Chemistry, 2002, 74(9): 2217-2223

[36]

LeiC.-x., HuS.-q., ShenG.-l., YuR.-qin.. Immobilization of horseradish peroxidase to a nano-Au monolayer modified chitosan-entrapped carbon paste electrode for the detection of hydrogen peroxide [J]. Talanta, 2003, 59(5): 981-988

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/