Influences of melt spinning on electrochemical hydrogen storage performance of nanocrystalline and amorphous Mg2Ni-type alloys

Yang-huan Zhang , Bao-wei Li , Hui-ping Ren , Zhong-hui Hou , Feng Hu , Xin-lin Wang

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (6) : 1825 -1832.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (6) : 1825 -1832. DOI: 10.1007/s11771-011-0909-x
Article

Influences of melt spinning on electrochemical hydrogen storage performance of nanocrystalline and amorphous Mg2Ni-type alloys

Author information +
History +
PDF

Abstract

In order to improve the electrochemical hydrogen storage performance of the Mg2Ni-type electrode alloys, Mg in the alloy was partially substituted by La, and the nanocrystalline and amorphous Mg2Ni-type Mg20−xLaxNi10 (x=0, 2) alloys were synthesized by melt-spinning technique. The microstructures of the as-spun alloys were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical hydrogen storage properties of the experimental alloys were tested. The results show that no amorphous phase is detected in the as-spun Mg20Ni10 alloy, but the as-spun Mg18La2Ni10 alloy holds a major amorphous phase. As La content increases from 0 to 2, the maximum discharge capacity of the as-spun (20 m/s) alloys rises from 96.5 to 387.1 mA·h/g, and the capacity retaining rate (S20) at the 20th cycle grows from 31.3% to 71.7%. Melt-spinning engenders an impactful effect on the electrochemical hydrogen storage performances of the alloys. With the increase in the spinning rate from 0 to 30 m/s, the maximum discharge capacity increases from 30.3 to 135.5 mA·h/g for the Mg20Ni10 alloy, and from 197.2 to 406.5 mA·h/g for the Mg18La2Ni10 alloy. The capacity retaining rate (S20) of the Mg20Ni10 alloy at the 20th cycle slightly falls from 36.7% to 27.1%, but it markedly mounts up from 37.3% to 78.3% for the Mg18La2Ni10 alloy.

Keywords

Mg2Ni-type hydrogen storage alloy / melt-spinning / structure / electrochemical performance

Cite this article

Download citation ▾
Yang-huan Zhang, Bao-wei Li, Hui-ping Ren, Zhong-hui Hou, Feng Hu, Xin-lin Wang. Influences of melt spinning on electrochemical hydrogen storage performance of nanocrystalline and amorphous Mg2Ni-type alloys. Journal of Central South University, 2011, 18(6): 1825-1832 DOI:10.1007/s11771-011-0909-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WooJ. H., LeeK. S.. Electrode characteristics of nanostructured Mg2Ni-type alloys prepared by mechanical alloying [J]. Journal of the Electrochemical Society, 1999, 146(3): 819-823

[2]

SakaiT., IshikawaH., OguruK., IwakuraC., YoneyamaH.. Effects of microencapsulation of hydrogen storage alloy on the performances of sealed nickel/metal hydride batteries [J]. Journal of the Electrochemical Society, 1987, 134(3): 558-562

[3]

LiuF. J., SudaS.. Properties and characteristics of fluorinated hydriding alloys [J]. Journal of Alloys and Compounds, 1995, 231(1/2): 742-750

[4]

YamamotoM., KandaM.. Investigation of AB5 type hydrogen storage alloy corrosion behavior in alkaline electrolyte solutions [J]. Journal of Alloys and Compounds, 1997, 253/254: 660-664

[5]

YeH., LeiY. Q., ChenL. S., ZhangH.. Electrochemical characteristics of amorphous Mg0.9M0.1Ni (M=Ni, Ti, Zr, Co and Si) ternary alloys prepared by mechanical alloying [J]. Journal of Alloys and Compounds, 2000, 311(2): 194-199

[6]

CraccoD., Percheron-GueganA.. Morphology and hydrogen absorption properties of an AB2 type alloy ball milled with Mg2Ni [J]. Journal of Alloys and Compounds, 1998, 268(1/2): 248-255

[7]

LeiY. Q., WuY., YangQ. M., WuJ., WangQ. D.. Electrochemical behavior of some mechanicalloy alloyed Mg-Ni-based amorphous hydrogen storage alloys [J]. International Journal of Research in Physical Chemistry and Chemical Physics, 1994, 183(1/2): 379-384

[8]

IWAKURA C, NOHARA S, INOUE H, FUKUMOTO Y. Surface modification of MgNi alloy with graphite by ball-milling for use in nickel-metal hydride batteries [J]. Chemical Communications, 1996(15): 1831–1832.

[9]

KohnoT., KandaM.. Effect of partial substitution on hydrogen storage properties of Mg2Ni alloy [J]. Journal of the Electrochemical Society, 1997, 144(7): 2384-2388

[10]

NoharaS., FujitaN., ZhangS. G., InoueH., IwakuraC.. Electrochemical characteristics of a homogeneous amorphous alloy prepared by ball-milling Mg2Ni with Ni [J]. Journal of Alloys and Compounds, 1998, 267(1/2): 76-78

[11]

HuangL. J., LiangG. Y., SunZ. B., WuD. C.. Electrode properties of melt-spun Mg-Ni-Nd amorphous alloys [J]. Journal of Power Sources, 2006, 160(1): 684-687

[12]

SpassovT., KösterU.. Hydrogenation of amorphous and nanocrystalline Mg-based alloys [J]. Journal of Alloys and Compounds, 1999, 287(1/2): 243-250

[13]

TanakaK., KandaY., FuruhashiM., SaitoK., KurodaK., SakaH.. Improvement of hydrogen storage properties of melt-spun Mg-Ni-RE alloys by nanocrystallization [J]. Journal of Alloys and Compounds, 1999, 293/294/295: 521-525

[14]

SpassovT., SolsonaP., SuriñachS., BaróM. D.. Optimization of the ball-milling and heat treatment parameters for synthesis of amorphous and nanocrystalline Mg2Ni-based alloys [J]. Journal of Alloys and Compounds, 2003, 349(1/2): 242-254

[15]

OrimoS., FujiiH.. Materials science of Mg-Ni-based new hydrides [J]. Applied Physics A, 2001, 72(2): 167-186

[16]

RyanD. H., DumaisF., PatelB., KyciaJ., Ström-olsenJ. O.. A rechargeable cell based on amorphous Ni-Zr [J]. Journal of the Less Common Metals, 1991, 172/173/174(3): 1246-1251

[17]

LeeK. S., HaC. J.. Development of Ti-Fe-X metal hydride electrode by mechanical alloying [J]. Korean Journal of Materials Research, 1995, 5(1): 112-120

[18]

LibowitzG. G., MaelandA. J.. Interactions of hydrogen with metallic glass alloys [J]. Journal of the Less Common Metals, 1984, 101: 131-143

[19]

LiY., ChengY. T.. Amorphous La-Ni thin film electrodes [J]. Journal of Alloys and Compounds, 1995, 223(1): 6-12

[20]

LaiW. H., YuC. Z.. Research survey of improving discharge voltage platform for Ni-MH battery [J]. Chinese Battery Industry, 1996, 26(4): 189-191

[21]

WuY., HanW., ZhouS. X., LototskyM. V., SolbergJ. K., YartysV. A.. Microstructure and hydrogenation behavior of ball-milled and melt-spun Mg-10Ni-2Mm alloys [J]. Journal of Alloys and Compounds, 2008, 466(1/2): 176-181

[22]

IwakuraC., MatsuokaM., AsaiK., KohnoT.. Surface modification of metal hydride negative electrodes and their charge/discharge performance [J]. Journal of Power Sources, 1992, 38(3): 335-343

[23]

SpassovT., KösterU.. Thermal stability and hydriding properties of nanocrystalline melt-spun Mg63Ni30Y7 alloy [J]. Journal of Alloys and Compounds, 1998, 279: 279-286

[24]

LiuW. H., LeiY. Q., SunD. L., WuJ., WangQ. D.. A study of the degradation of the electrochemical capacity of amorphous Mg50Ni50 alloy [J]. Journal of Power Sources, 1996, 58(2): 243-247

[25]

WangL. B., TangY. H., WangY. J., LiQ. D., SongH. N., YangH. B.. The hydrogenation properties of Mg1.8Ag0.2Ni alloy [J]. Journal of Alloys and Compounds, 2002, 336(1/2): 297-300

[26]

JiangJ. J., GasikM.. An electrochemical investigation of mechanical alloying of MgNi-based hydrogen storage alloys [J]. Journal of Power Sources, 2000, 89(1): 117-124

[27]

SimičićM. V., ZdujićM., DimitrijevićR., Nikolić-BujanovićL., PopovićN. H.. Hydrogen absorption and electrochemical properties of Mg2Ni-type alloys synthesized by mechanical alloying [J]. Journal of Power Sources, 2006, 158(1): 730-734

[28]

ZhangY. H., ChenM. Y., WangX. L., WangG. Q., LinY. F., QiY.. Effect of boron additive on the cycle life of low-Co AB5-type electrode consisting of alloy prepared by cast and rapid quenching [J]. Journal of Power Sources, 2004, 125(2): 273-279

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/