Influence of methane on hot filament CVD diamond films deposited on high-speed steel substrates with WC-Co interlayer

Ling Wang , Qiu-ping Wei , Zhi-ming Yu , Zhi-hui Wang , Meng-kun Tian

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (6) : 1819 -1824.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (6) : 1819 -1824. DOI: 10.1007/s11771-011-0908-y
Article

Influence of methane on hot filament CVD diamond films deposited on high-speed steel substrates with WC-Co interlayer

Author information +
History +
PDF

Abstract

Diamond films were deposited on high-speed steel substrates by hot filament chemical vapor deposition (HFCVD) method. To minimize the early formation of graphite and to enhance the diamond film adhesion, a WC-Co coating was used as an interlayer on the steel substrates by high velocity oxy-fuel spraying. The effects of methane content on nucleation, quality, residual stress and adhesion of diamond films were investigated. The results indicate that the increasing methane content leads to the increase in nucleation density, residual stress, the degradation of quality and adhesion of diamond films. Diamond films deposited on high-speed steel (HSS) substrate with a WC-Co interlayer exhibit high nucleation density and good adhesion under the condition of the methane content initially set to be a higher value (4%, volume fraction) for 30 min, and then reduced to 2% for subsequent growth at pressure of 3 kPa and substrate temperature of 800 °C.

Keywords

diamond film / WC-Co interlayer / methane / nucleation density / adhesion

Cite this article

Download citation ▾
Ling Wang, Qiu-ping Wei, Zhi-ming Yu, Zhi-hui Wang, Meng-kun Tian. Influence of methane on hot filament CVD diamond films deposited on high-speed steel substrates with WC-Co interlayer. Journal of Central South University, 2011, 18(6): 1819-1824 DOI:10.1007/s11771-011-0908-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GlozmanO., HalperinG., EtsioI., BernerA., ShectmanD., LeeG. H., HoffmanA.. Study of the wear behavior and adhesion of diamond films deposited on steel substrates by use of a Cr-N interlayer [J]. Diamond and Related Materials, 1999, 8(2/3/4/5): 859-864

[2]

YangQ., TangY., YangS. L., HirosebA.. Simultaneous growth of diamond thin films and carbon nanotubes at temperatures ≤550 °C [J]. Carbon, 2008, 46(4): 589-595

[3]

GowriM., LiH., SchermerJ. J., EnckevortW. J. P., MeulenJ. J.. Direct deposition of diamond films on steel using a three-step process [J]. Diamond and Related Materials, 2006, 15(4/5/6/7/8): 498-501

[4]

SikderA. K., MisraD. S., SinghbalD., ChakravortyS.. Surface engineering of metal-diamond composite coatings on steel substrates using chemical vapour deposition and electroplating routes [J]. Surface and Coatings Technology, 1999, 114(2/3): 230-234

[5]

NakamuraE., HirakuriK. K., OhyamaM.. High quality chemical vapor deposition diamond growth on iron and stainless steel substrates [J]. Journal of Applied Physic, 2002, 92(6): 3393-3396

[6]

BorgesC. F. M., PfenderE., HeberleinJ.. Influence of nitrided and carbonitrided interlayers on enhanced nucleation of diamond on stainless steel 304 [J]. Diamond and Related Materials, 2001, 10(11): 1983-1990

[7]

SchwarzS., RosiwalS. M., MusayevY., SingerR. F.. High temperature diffusion chromizing as a successful method for CVD-diamond coating of steel (Part II) [J]. Diamond and Related Materials, 2003, 12(3/4/5/6/7): 701-706

[8]

RalchenkoV. G., SmolinA. A., PereverzevV. G.. Diamond deposition on steel with CVD tungsten intermediate layer [J]. Diamond and Related Materials, 1995, 4(5/6): 754-758

[9]

BuijnsterJ. G., ShankarP., FleischerW., EnckevortW. J. P., SchermerJ. J., MeulenJ. J.. CVD diamond deposition on steel using arc-plated chromium nitride interlayers [J]. Diamond and Related Materials, 2002, 11(3/4/5/6): 536-544

[10]

LiY. S., TangY., YangQ., XiaoC., HiroseA.. Diamond deposition on steel substrates with an Al interlayer [J]. International Journal of Refractory Metals & Hard Materials, 2009, 27(2): 417-420

[11]

KawaradaM., KuriharaK., SasakiK.. Diamond synthesis on a metal substrate [J]. Diamond and Related Materials, 1993, 2(5/6/7): 1083-1089

[12]

SilvaF. J. G., BaptistaA. P. M., PereiraE., TeixeiraV., FanQ. H., FernandeA. J. S., CostaF. M.. Microwave plasma chemical vapour deposition diamond nucleation on ferrous substrates with Ti and Cr interlayers [J]. Diamond and Related Materials, 2002, 11(9): 1617-1622

[13]

PoliniR., MatteiG., ValleR., CasadeiF.. Raman spectroscopy characterization of diamond films on steel substrates with titanium carbide arc-plated interlayer [J]. Thin Solid Films, 2006, 515(3): 1011-1016

[14]

WeiQ.-p., YuZ.-m., AshfoldM. N. R., MaL., ChenZhong.. Fretting wear and electrochemical corrosion of well-adhered CVD diamond films deposited on steel substrates with a WC-Co interlayer [J]. Diamond and Related Materials, 2010, 19(10): 1144-1152

[15]

WeiQ.-p., YuZ.-m., AshfoldM. N. R., ChenZ., WangL., MaLi.. Effects of thickness and cycle parameters on fretting wear behavior of CVD diamond coatings on steel substrates [J]. Surface and Coatings Technology, 2010, 205(1): 158-167

[16]

WeiQ.-p., YuZ.-m., MaL., YinD.-feng.. Enhanced nucleation and smoothness of nanocrystalline diamond films via W-C gradient interlayer [J]. International Journal of Modern Physics B, 2009, 23(6/7): 1676-1682

[17]

WeiQ.-p., YuZ.-m., MaL., YinD.-f., YeJ.. The effects of temperature on nanocrystalline diamond films deposited on WC-13% Co substrate with W-C gradient layer [J]. Applied Surface Science, 2009, 256(5): 1322-1328

[18]

WeiQ.-p., YuZ.-m., AshfoldM. N. R., YeJ., MaLi.. Synthesis of micro- or nano-crystalline diamond films on WC-Co substrates with various pretreatments by hot filament chemical vapor deposition [J]. Applied Surface Science, 2010, 256(13): 4357-4364

[19]

WeiQ.-p., AshfoldM. N. R., MankelevichY. A., YuZ.-m., LiuP.-z., MaLi.. Diamond growth on WC-Co substrates by hot filament chemical vapor deposition: Effect of filament-substrate separation [J]. Diamond and Related Materials, 2011, 20(516): 641-650

[20]

MayP. W., HarveyJ. N., AllanN. L., RichleyJ. C., MankelevichY. A.. Simulations of chemical vapor deposition diamond film growth using a kinetic Monte Carlo model [J]. Journal of Applied Physics, 2010, 108(1): 014905

[21]

CherianK. A., LitsterJ., RudolphV., WhiteE. T.. Diamond needles and tips as engineered growth shapes [J]. Materials Research Society, 1996, 416: 241-247

[22]

FerrariA. C., RobertsonJ.. Origin of the 1 150 cm-1 Raman mode in nanocrystalline diamond [J]. Physical Review B, 2001, 63(12): 121405

[23]

ShroderR. E., NemanichR. J., GlassJ. T.. Analysis of the composite structures in diamond thin films by Raman spectroscopy [J]. Physical Review B, 1990, 41(6): 3738

[24]

KleinC. A., CardinaleG. F.. Young’s modulus and Poisson’s ratio of CVD diamond [J]. Diamond and Related Materials, 1993, 2(5/6/7): 918

[25]

HuangZ.-q., HeY.-h., CaiH.-t., WuC.-h., XiaoY.-f., HuangB.-yun.. Thermal residual stress analysis of diamond coating on graded cemented carbides [J]. Journal of Central South University of Technology: Science and Technology, 2008, 15(2): 165-169

[26]

LiuH., DandyD. S.. Studies on nucleation process in diamond CVD: An overview of recent developments [J]. Diamond and Related Materials, 1995, 4(10): 1173

[27]

PoliniR., MantiniF. P., BarlettaM., ValleR., CasadeiF.. Hot filament chemical vapour deposition and wear resistance of diamond films on WC-Co substrates coated using PVD-arc deposition technique [J]. Diamond and Related Materials, 2006, 15(9): 1284-1291

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/