Simulation of faceted dendrite growth of non-isothermal alloy in forced flow by phase field method

Zhi Chen , Li-mei Hao , Chang-le Chen

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (6) : 1780 -1788.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (6) : 1780 -1788. DOI: 10.1007/s11771-011-0902-4
Article

Simulation of faceted dendrite growth of non-isothermal alloy in forced flow by phase field method

Author information +
History +
PDF

Abstract

Numerical simulation based on a new regularized phase field model was presented to simulate the dendritic shape of a non-isothermal alloy with strong anisotropy in a forced flow. The simulation results show that a crystal nucleus grows into a symmetric dendrite in a free flow and into an asymmetry dendrite in a forced flow. As the forced flow velocity is increased, both of the promoting effect on the upstream arm and the inhibiting effects on the downstream and perpendicular arms are intensified, and the perpendicular arm tilts to the upstream direction. With increasing the anisotropy value to 0.14, all of the dendrite arms tip velocities are gradually stabilized and finally reach their relative saturation values. In addition, the effects of an undercooling parameter and a forced compound flow on the faceted dendrite growth were also investigated.

Keywords

phase field method / forced flow / strong anisotropy / faceted dendrite / steady state tip velocity

Cite this article

Download citation ▾
Zhi Chen, Li-mei Hao, Chang-le Chen. Simulation of faceted dendrite growth of non-isothermal alloy in forced flow by phase field method. Journal of Central South University, 2011, 18(6): 1780-1788 DOI:10.1007/s11771-011-0902-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BeckermannC., DiepersH. J., SteinbachI., KarmaA., TongX.. Modeling melt convection in phase-field simulations of solidification [J]. Journal of Computational Physics, 1999, 154(2): 468-496

[2]

LanC. W., LiuC. C., HsuC. M.. An adaptive finite volume method for incompressible heat flow problems in solidification [J]. Journal of Computational Physics, 2002, 178(2): 464-497

[3]

MedvedevD., KassnerK.. Lattice-Boltzmann scheme for dendrite growth in presence of convection [J]. Journal of Crystal Growth, 2005, 275(1/2): 1495-1500

[4]

Al-RawahiN., TryggvasonG.. Numerical simulation of dendrite solidification with convection: Two-dimensional geometry [J]. Journal of Computational Physics, 2002, 180(2): 471-496

[5]

TongX., BeckermannC., KarmaA., LiQ.. Phase-field simulations of dendrite crystal growth in a forced flow [J]. Physical Review E, 2001, 63(6): 061601

[6]

ZhuM. F., LeeS. Y., HongC. P.. Modified cellular automaton model for the prediction of dendrite growth with melt convection [J]. Physical Review E, 2004, 69(6): 061610

[7]

LanC. W., ChangY. C., ShihC. J.. Adaptive phase field simulation of non-isothermal free dendrite growth of a binary alloy [J]. Acta Materialia, 2003, 51(7): 1857-1869

[8]

KimY. T., GoldenfeldN.. Computation of dendrite microstructures using a level set method [J]. Physical Review E, 2000, 62(2): 2471-2474

[9]

UdaykumarH. S., MarellaS., KrishnanS.. Sharp-interface simulation of dendrite growth with convection: Benchmarks [J]. International Journal of Heat and Mass Transfer, 2003, 46(14): 2615-2627

[10]

KarmaA., RappelW. J.. Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics [J]. Physical Review E, 1996, 53(4): 3017-3020

[11]

KarmaA., RappelW. J.. Quantitative phase-field modeling of dendrite growth in two and three dimensions [J]. Physical Review E, 1998, 57(4): 4323-4349

[12]

TanL. J., ZabarasN.. A level set simulation of dendrite solidification with combined features of front-tracking and fixed-domain methods [J]. Journal of Computational Physics, 2006, 211(1): 36-63

[13]

LiQ., BeckermannC.. Modeling of free dendrite growth of succinonitrile acetone alloys with thermosolutal melt convection [J]. Journal of Crystal Growth, 2002, 236(1/2/3): 482-498

[14]

LanC. W., HsuC. M., LiuC. C.. Efficient adaptive phase field simulation of dendrite growth in a forced flow at low supercooling [J]. Journal of Crystal Growth, 2002, 241(3): 379-386

[15]

EgglestonJ. J., McfaddenG. B., VoorheesP. W.. A phase-field model for highly anisotropic interfacial energy [J]. Physica D, 2001, 150(1/2): 91-103

[16]

KasajimaH., NaganoE., SuzukiT., KimS. G., KimW. T.. Phase-field modeling for facet dendrite growth of silicon [J]. Science and Technology of Advanced Materials, 2003, 4(6): 553-557

[17]

SuzukiT., KimS. G., KimW. T.. Two-dimensional facet crystal growth of silicon from undercooled melt of Si-Ni alloy [J]. Materials Science and Engineering A, 2007, 449–451: 99-104

[18]

SekerkaR. F.. Equilibrium and growth shapes of crystals: How do they differ and why should we care? [J]. Crystal Research and Technology, 2005, 40(4/5): 291-306

[19]

KimS. G., KimW. T.. Phase field modeling of dendrite growth with high anisotropy [J]. Journal of Crystal Growth, 2005, 275(1/2): 355-360

[20]

ChenP., TsaiY. L., LanC. W.. Phase field modeling of growth competition of silicon grains [J]. Acta Materialia, 2008, 56(15): 4114-4122

[21]

TorabiS., LowengrubJ., VoigtA., WiseS.. A new phase-field model for strongly anisotropic systems [J]. Proceedings of the Royal Society A, 2009, 465(2105): 1337-1359

[22]

WangJ. C., InatomiY. K.. Three-dimensional phase field modeling of the faceted cellular growth [J]. ISIJ International, 2010, 50(12): 1901-1907

[23]

LinH. K., ChenC. C., LanC. W.. Adaptive three-dimensional phase-field modeling of dendrite crystal growth with high anisotropy [J]. Journal of Crystal Growth, 2011, 39(1): 51-54

[24]

Lez-CoincaR. G., Ramírez-PiscinaL., CasademuntJ., Hernández-MachadoA., Tó Th-KatonaT., Bö Rzsö NyiT., Bukaá. Heat diffusion anisotropy in dendrite growth: Phase field simulations and experiments in liquid crystals [J]. Journal of Crystal Growth, 1998, 193(4): 712-719

[25]

RosamJ., JimackP. K., MullisA. M.. An adaptive, fully implicit multigrid phase-field model for the quantitative simulation of non-isothermal binary alloy solidification [J]. Acta Materialia, 2008, 56(17): 4559-4569

[26]

KarmaA.. Phase-field formulation for quantitative modeling of alloy solidification [J]. Physical Review Letters, 2011, 87(11): 115701

[27]

TakakiT., HasebeT., TomitaY.. Two-dimensional phase-field simulation of self-assembled quantum dot formation [J]. Journal of Crystal Growth, 2006, 287(2): 495-499

[28]

ZhangT., WangG. X., ZhangH., LadeindeF., PrasadV.. Turbulent transport of oxygen in the Czochralski growth of large silicon crystals [J]. Journal of Crystal Growth, 1999, 198/199(1): 141-146

[29]

GorbunovL., PedchenkoA., FeodorovA., TomzigE., VirbulisJ., AmmonW. V.. Physical modeling of the melt flow during large-diameter silicon single crystal growth [J]. Journal of Crystal Growth, 2003, 257(1/2): 7-18

[30]

DebierreJ. M., KarmaA., CelestiniF., GuérinR.. Phase-field approach for faceted solidification [J]. Physical Review E, 2003, 68(4): 041604

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/