First-principles calculation of structural and thermodynamic properties of titanium boride

Yan-feng Li , Hui Xu , Qing-lin Xia , Xiao-liang Liu

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (6) : 1773 -1779.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (6) : 1773 -1779. DOI: 10.1007/s11771-011-0901-5
Article

First-principles calculation of structural and thermodynamic properties of titanium boride

Author information +
History +
PDF

Abstract

The equilibrium lattice parameters, electronic structure, bulk modulus, Debye temperature, heat capacity and Gibbs energy of TiB and TiB2 were investigated using the pseudopotential plane-wave method based on density functional theory (DFT) and the improved quasi-harmonic Debye method. The results show that the total density of states (DOS) of TiB2 is mainly provided by the orbit hybridization of Ti-3d and B-2p states, and the total DOS of TiB is mainly provided by the hybrids bond of Ti-3d and B-2p below the Fermi level and Ti-Ti bond up to the Fermi level. The Ti-B hybrid bond in TiB2 is stronger than that in TiB. Finally, the enthalpy of formation at 0 K, heat capacity and Gibbs free energy of formation at various temperatures were determined. The calculated results are in excellent agreement with the available experimental data.

Keywords

electronic structure / Debye model / thermodynamic properties / density functional theory / titanium boride

Cite this article

Download citation ▾
Yan-feng Li, Hui Xu, Qing-lin Xia, Xiao-liang Liu. First-principles calculation of structural and thermodynamic properties of titanium boride. Journal of Central South University, 2011, 18(6): 1773-1779 DOI:10.1007/s11771-011-0901-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HanY.-f., DaiY.-b., ShuD., WangJ., SunB.-de.. First-principles study of TiB2(0001) surfaces [J]. Journal of Physics: Condensed Matter, 2006, 18(17): 4197-4205

[2]

WangH.-y., JiangQ.-c., ZhaoY.-g., ZhaoFang.. In situ synthesis of TiB2/Mg composite by self-propagating high-temperature synthesis reaction of the Al-Ti-B system in molten magnesium [J]. Journal of Alloys and Compounds, 2004, 379(1): 4-7

[3]

PellegJ.. Schottky barrier formation at Al/TiB2/TiSi2/Si and Cu/TiB2/TiSi2/Si interfaces [J]. Microelectronic Engineering, 2004, 75(4): 413-422

[4]

ChoyK. L., BalzerR., RawlingsR. D.. Diffusion barrier coatings on ductile particles for protection in bioactive glass-ceramic matrix [J]. Journal of the European Ceramic Society, 2000, 20(12): 2199-2207

[5]

DeckerB. F., KasperJ. S.. The crystal structure of Ti-B [J]. Acta Crystallographica, 1954, 7(1): 77-81

[6]

HEGENSCHEIDT T. Possibilities and limits of roentgen-diffraction experiments demonstrated using the example of three “simple” structures [D]. Karlsruhe, Germany. Department of Physics, University of Karlsruhe. 1998: 1–81.

[7]

SpoorP. S., MaynardJ. D., PanM. J., GreenD. J., HellmannJ. R., TanakaT.. Elastic constants and crystal anisotropy of titanium diboride [J]. Applied Physics Letters, 1997, 70(15): 1959-1961

[8]

WrightS. I.. Estimation of single-crystal elastic constants from textured polycrystal measurements [J]. Journal of Applied Crystallography, 1994, 27(5): 794-801

[9]

PerottoniC. A., PereiraA. S., JornadaJ. A. H.. Periodic Hartree-Fock linear combination of crystalline orbitals calculation of the structure, equation of state and elastic properties of titanium diboride [J]. Journal of Physics: Condensed Matter, 2000, 12(32): 7205-7222

[10]

MilmanV., WarrenM. C.. Elastic properties of TiB2 and MgB2 [J]. Journal of Physics: Condensed Matter, 2001, 13(24): 5585-5595

[11]

VajeestonP., RavindranP., RaviC., AsokamaniR.. Electronic structure, bonding, and ground-state properties of AlB2-type transition-metal diborides [J]. Physical Review B, 2001, 63(4): 045115-045127

[12]

LieK., BrydsonR., DavockH.. Band structure of TiB2: Orientation-dependent EELS near-edge fine structure and the effect of the core hole at the B//K edge [J]. Physical Review B, 1999, 59(8): 5361-5367

[13]

LieK., HoierR., BrydsonR.. Theoretical site- and symmetry-resolved density of states and experimental EELS near-edge spectra of AlB2 and TiB2 [J]. Physical Review B, 2000, 61(3): 1786-1794

[14]

MaX.-y., LiC.-r., DuZ.-m., ZhangW.-jing.. Thermodynamic assessment of the Ti-B system [J]. Journal of Alloys and Compounds, 2004, 370(1): 149-158

[15]

VanderbiltD.. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Physical Review B, 1990, 41(11): 7892-7895

[16]

PerdewJ. P., ChevaryJ. A., VoskoS. H., KoblarA. J., MarkR. P., SinghD. J., CarlosF.. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation [J]. Physical Review B, 1992, 46(11): 6671-6687

[17]

WangH.-y., ChenX.-r., ZhuW.-j., ChengYan.. Structural and elastic properties of MgB2 under high pressure [J]. Physical Review B, 2005, 72(17): 172502-172506

[18]

BlancoM. A., FranciscoE., LuanaV.. Gibbs: Isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model [J]. Computer Physics Communications, 2004, 158(1): 57-72

[19]

ZhangW., ChengY., ZhuJ., ChenX.-rong.. Structural, thermodynamic and electronic properties of zinc-blende AlN from first-principles calculations [J]. Chinese Physics B, 2009, 18(3): 1207-1214

[20]

LiF.-y., ChenL.-c., WangL.-j., GuH.-c., WangR.-j., CheR.-z., ShenZ.-yi.. Pressure induced phase transition in TiB [J]. CHIN PHYS LETT, 2001, 18(9): 1240-1241

[21]

YaoQ., XingH., MengL.-J., SunJian.. Theoretical calculation of elastic properties of TiB2 and TiB [J]. Chinese Journal of Nonferrous Metals, 2007, 17(8): 1297-1301

[22]

PandaK. B., ChandranK. S. R.. First principles determination of elastic constants and chemical bonding of titanium boride (TiB) on the basis of density functional theory [J]. Acta Materialia, 2006, 54(6): 1641-1657

[23]

MunroR. G.. Material properties of titanium diboride [J]. Journal of Research of the National Institute of Standards and Technology, 2000, 105(5): 709-720

[24]

NorihikoL., Okamoto, KusakariM., TanakaK., InuiH., OtaniS.. Anisotropic elastic constants and thermal expansivities in monocrystal CrB2, TiB2, and ZrB2 [J]. Acta Materialia, 2010, 58(1): 76-84

[25]

RosnerH., AnJ. M., PickettW. E., DrechslerS. L.. Fermi surfaces of diborides: MgB2 and ZrB2 [J]. Physical Review B, 2002, 66(2): 024521-024527

[26]

PandaK. B., ChandranK. S. R.. Determination of elastic constants of titanium diboride (TiB2) from first principles using FLAPW implementation of the density functional theory [J]. Computational Materials Science, 2006, 35(2): 134-150

[27]

TianD.-c., WangX.-bing.. Electronic structure and equation of state of TiB2 [J]. Journal of Physics: Condensed Matter, 1992, 4(45): 8765-8772

[28]

IharaH., HirabayashiM., NakagawaH.. Band structure and X-ray photoelectron spectrum of ZrB2 [J]. Physical Review, 1977, 16(2): 726-730

[29]

MurrayJ. L., LiaoP. K., SpearK. E.. The B-Ti (boron-titanium) system [J]. Journal of Phase Equilibria, 1986, 7(6): 550-555

[30]

RudyE., WindischS.Ternary phase equilibria in transition metal-boron-carbon-silicon systems (Part I) [R], 1966, Ohio, Air Force Materials Laboratory, Wright Patterson Air Force Base

[31]

JiangC., LinZ.-j., ZhangJ.-z., ZhaoY.-sheng.. First-principles prediction of mechanical properties of gamma-boron [J]. Applied Physics Letters, 2009, 94(19): 191906-191911

[32]

OganovA. R., ChenJ., GattiC., MaY. Z., MaY. M., GlassC. W., LiuZ. X., YuT., KurakevychO. O., SolozhenkoV. L.. Ionic high-pressure form of elemental boron [J]. Nature, 2009, 457(7225): 863-867

[33]

WilliamsR. K., BecherP. F., FinchC. B.. Study of the Kondo effect and intrinsic electrical conduction in titanium diboride [J]. Journal of Applied Physics, 1984, 56(8): 202295-202303

[34]

SchisselP. O., TrulsonO. C.. Mass spectrometric study of the vaporization of the titanium-boron system [J]. Journal of Physical Chemistry, 1962, 66(8): 1492-1496

[35]

YurickJ., SpearK. E.. Thermodynamics of TiB2 from Ti-B-N studies [J]. Thermodynamics of Nuclear Materials, 1980, I: 73-90

[36]

GuzmanL., ElenaA., MiotelloP. M., OssiD. C., KothariM.. Phase formation in the N-B-Ti system [J]. Vacuum, 1995, 46(8): 951-954

[37]

LiB.-s., WuS.-p., ShangJ.-l., GuoJ.-j., FuH.-zhi.. Thermodynamics and dynamics of TiB formation in in-situ titanium matrix composite [J]. Aerospace Materials & Technology, 2005, 35(4): 42-46

AI Summary AI Mindmap
PDF

89

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/