Inverse synthetic aperture radar imaging based on sparse signal processing

Fei Zou , Xiang Li , Roberto Togneri

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (5) : 1609 -1613.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (5) : 1609 -1613. DOI: 10.1007/s11771-011-0879-z
Article

Inverse synthetic aperture radar imaging based on sparse signal processing

Author information +
History +
PDF

Abstract

Based on the measurement model of inverse synthetic aperture radar (ISAR) within a small aspect sector, an imaging method was presented with the application of sparse signal processing. This method can form higher resolution inverse synthetic aperture radar images from compensating incomplete measured data, and improves the clarity of the images and makes the feature structure much more clear, which is helpful for target recognition. The simulation results indicate that this method can provide clear ISAR images with high contrast under complex motion case.

Keywords

ISAR imaging / sparse component analysis / target recognition / high resolution target image

Cite this article

Download citation ▾
Fei Zou, Xiang Li, Roberto Togneri. Inverse synthetic aperture radar imaging based on sparse signal processing. Journal of Central South University, 2011, 18(5): 1609-1613 DOI:10.1007/s11771-011-0879-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DanielsD. J.. Surface-penetrating radar [J]. Electron Commun Eng J, 1996, 8: 165-182

[2]

GrandjeanG., GourryJ., BitriA.. Evaluation of GPR techniques for civil-engineering applications: Study on a test site [J]. J Appl Geophys, 2000, 45(3): 141-156

[3]

GaderP., MystkowskiM., ZhaoY.. Landmine detection with ground penetrating radar using hidden Markov models [J]. IEEE Trans Geosci Remote Sens, 2001, 39: 1231-1244

[4]

FengX., SatoM.. Pre-stack migration applied to GPR for landmine detection [J]. Inverse Prob, 2004, 20: 99-115

[5]

GroenenboomJ., YarovoyA.. Data processing and imaging in GPR system dedicated for landmine detection [J]. Subsurf Sens Technol Appl, 2002, 3(4): 387-402

[6]

SCIOTTI M, COLONE F, PASTINA D, BUCCIARELLI T. GPR for archaeological investigations: Real performance assessment for different surface and subsurface conditions [C]// Proceedings of IGARSS 03. 2003: 2266–2268.

[7]

HUBBARD S, CHEN J, WILLIAMS K, RUBIN Y, PETERSON J. Environmental and agricultural applications of GPR [C]// Proceeding of the 3rd Int Workshop on Adv Ground Penetrating Radar. Delft, Netherlands, 2005: 45–49.

[8]

DanielsD.Ground penetrating radar, 20042nd edLondon, U.K., The Inst Elect Eng (IEE)

[9]

PoggiG., RagoziniA. R. P., VerdolivaL.. Compression of SAR data through range focusing and variable-rate vector quantization [J]. IEEE Trans Geosci Remote Sens, 2000, 38(3): 1282-1289

[10]

QiH.-m., YuW.-d., ChenXi.. Piecewise linear mapping algorithm for SAR raw data compression [J]. Science in China Series F: Information Sciences, 2008, 51: 2126-2134

[11]

ZhaoY. P., WanF., LeiH.. Compression on fractional saturation SAR raw data [J]. J Electr Inform Tech, 2004, 26(3): 489-494

[12]

MAX J. Quantizing for minimum distortion [J]. IRE Trans Inform Theory, 1960: 7–12.

[13]

LloydS.. Least squares quantization in PCM [J]. IEEE Trans Inform Theory, 1982, 28(2): 129-137

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/