Synchronous tracking control of 6-DOF hydraulic parallel manipulator using cascade control method

Yang-jun Pi , Xuan-yin Wang , Xi Gu

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (5) : 1554 -1562.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (5) : 1554 -1562. DOI: 10.1007/s11771-011-0872-6
Article

Synchronous tracking control of 6-DOF hydraulic parallel manipulator using cascade control method

Author information +
History +
PDF

Abstract

The synchronous tracking control problem of a hydraulic parallel manipulator with six degrees of freedom (DOF) is complicated since the inclusion of hydraulic elements increases the order of the system. To solve this problem, cascade control method with an inner/outer-loop control structure is used, which masks the hydraulic dynamics with the inner-loop so that the designed controller takes into account of both the mechanical dynamics and the hydraulic dynamics of the manipulator. Furthermore, a cross-coupling control approach is introduced to the synchronous tracking control of the manipulator. The position synchronization error is developed by considering motion synchronization between each actuator joint and its adjacent ones based on the synchronous goal. Then, with the feedback of both position error and synchronization error, the tracking is proven to guarantee that both the position errors and synchronization errors asymptotically converge to zero. Moreover, the effectiveness of the proposed approach is verified by the experimental results performed with a 6-DOF hydraulic parallel manipulator.

Keywords

synchronization error / cross-coupling / cascade control / hydraulic dynamics / parallel manipulator / degree of freedom

Cite this article

Download citation ▾
Yang-jun Pi, Xuan-yin Wang, Xi Gu. Synchronous tracking control of 6-DOF hydraulic parallel manipulator using cascade control method. Journal of Central South University, 2011, 18(5): 1554-1562 DOI:10.1007/s11771-011-0872-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MERLET J P. Parallel robots [M]. Kluwer Academic Publishers, 2006: 9.

[2]

DasguptaB., MruthyunjayaT. S.. The Stewart platform manipulator: A review [J]. Mechanism and Machine Theory, 2000, 35(1): 15-40

[3]

SirouspourM. R., SalcudeanS. E.. Nonlinear control of hydraulic robots [J]. IEEE Transactions on Robotics and Automation, 2001, 17(2): 173-182

[4]

DavliakosI., PapadopoulosE.. Model-based control of a 6-dof electrohydraulic Stewart-Gough platform [J]. Mechanism and Machine Theory, 2008, 43(11): 1385-1400

[5]

SunD., LuR., MillsJ. K., WangC.. Synchronous tracking control of parallel manipulators using cross-coupling approach [J]. International Journal of Robotics Research, 2006, 25(11): 1137-1147

[6]

KimH. S., ChoY. M., LeeK. I.. Robust nonlinear task space control for 6 DOF parallel manipulator [J]. Automatica, 2005, 41(9): 1591-1600

[7]

GuoH. B., LiuY. G., LiuG. R., LiH. R.. Cascade control of a hydraulically driven 6-DOF parallel robot manipulator based on a sliding mode [J]. Control Engineering Practice, 2008, 16(9): 1055-1068

[8]

ZhaoD. Y., LiS. Y., GaoF.. Fully adaptive feedforward feedback synchronized tracking control for Stewart Platform systems [J]. International Journal of Control Automation and Systems, 2008, 6(5): 689-701

[9]

ZhaoD., LiS., GaoF., ZhuQ.. Robust adaptive terminal sliding mode-based synchronised position control for multiple motion axes systems [J]. IET Control Theory and Applications, 2009, 3(1): 136-150

[10]

KorenY.. Cross-coupled biaxial computer control for manufacturing systems [J]. ASME Journal of Dynamic Systems, Measurement, and Control, 1980, 102(4): 265-272

[11]

SunD.. Position synchronization of multiple motion axes with adaptive coupling control [J]. Automatica, 2003, 39(6): 997-1005

[12]

GuanC., PanS. X.. Adaptive sliding mode control of electro-hydraulic system with nonlinear unknown parameters [J]. Control Engineering Practice, 2008, 16(11): 1275-1284

[13]

YaoB., BuF. P., ReedyJ., ChiuG. T. C.. Adaptive robust motion control of single-rod hydraulic actuators: Theory and experiments [J]. IEEE/ASME Transactions on Mechatronics, 2000, 5(1): 79-91

[14]

SepehriN., DumontG., LawrenceP., SassaniF.. Cascade Control of Hydraulically Actuated Manipulators [J]. Robotica, 1990, 8: 207-216

[15]

HeintzeJ., van Der WeidenA.. Inner-loop design and analysis for hydraulic actuators, with an application to impedance control [J]. Control Engineering Practice, 1995, 3(9): 1323-1330

[16]

LiQ.Research on the low velocity movement of the electro-hydraulic 6DOF parallel platform [D], 2008, Hangzhou, Zhejiang University

[17]

MERRITT H. Hydraulic control systems [M]. Wiley, 1967.

[18]

UnD., MillsJ.. Adaptive synchronized control for coordination of multirobot assembly tasks [J]. IEEE Transactions on Robotics and Automation, 2002, 18(4): 498-510

[19]

SLOTINE J, LI W. Applied nonlinear control [M]. Prentice Hall, 1991: 40-154.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/