Three-dimensional multi-constraint route planning of unmanned aerial vehicle low-altitude penetration based on coevolutionary multi-agent genetic algorithm
Zhi-hong Peng , Jin-ping Wu , Jie Chen
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (5) : 1502 -1508.
Three-dimensional multi-constraint route planning of unmanned aerial vehicle low-altitude penetration based on coevolutionary multi-agent genetic algorithm
To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration, a novel route planning method was proposed. First and foremost, a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA), an efficient global optimization algorithm. A dynamic route representation form was also adopted to improve the flight route accuracy. Moreover, an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation. Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following, terrain avoidance, threat avoidance (TF/TA2) and lower route costs than other existing algorithms. In addition, feasible flight routes can be acquired within 2 s, and the convergence rate of the whole evolutionary process is very fast.
unmanned aerial vehicle (UAV) / low-altitude penetration / three-dimensional (3D) route planning / coevolutionary multi-agent genetic algorithm (CE-MAGA)
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
/
| 〈 |
|
〉 |