Stability, detonation properties and pyrolysis mechanisms of polynitrotriprismanes C6H6−n(NO2)n (n=1−6)

Zhong-hai Tang , Yong-zhong Ouyang , Yi-zeng Liang , Li-qun Rao

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (5) : 1395 -1401.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (5) : 1395 -1401. DOI: 10.1007/s11771-011-0852-x
Article

Stability, detonation properties and pyrolysis mechanisms of polynitrotriprismanes C6H6−n(NO2)n (n=1−6)

Author information +
History +
PDF

Abstract

To further test whether polynitriprismanes are capable of being potential high energy density materials (HEDMs), extensive theoretical calculations were carried out to investigate on a series of polynitrotriprismanes (PNNPs): C6H6−n(NO2)n (n=1−6). Heats of formation (HOFs), strain energies (SE), and disproportionation energy (DE) were obtained using B3LYP/6-311+G(2df, 2p)//B3LYP/6-31G* method by designing different isodesmic reactions, respectively. Detonation properties of PNNPs were obtained by the well-known KAMLET-JACOBS equations, using the predicted densities (ρ) obtained by Monte Carlo method and HOFs. It is found that they increase as the number of nitro groups n varies from 1 to 6, and PNNPs with n≥4 have excellent detonation properties. The relative stability and the pyrolysis mechanism of PNNPs were evaluated by the calculated bond dissociation energy (BDE). The comparison of BDE suggests that rupturing the C-C bond is the trigger for thermolysis of PNNPs. The computed BDE for cleavage of C-C bond (88.5 kJ/mol) further demonstrates that only the hexa-nitrotriprismane can be considered to be the target of HEDMs.

Keywords

high energy density materials / polynitrotriprismanes / heats of formation / strain energies / disproportionation energy / bond dissociation energy

Cite this article

Download citation ▾
Zhong-hai Tang, Yong-zhong Ouyang, Yi-zeng Liang, Li-qun Rao. Stability, detonation properties and pyrolysis mechanisms of polynitrotriprismanes C6H6−n(NO2)n (n=1−6). Journal of Central South University, 2011, 18(5): 1395-1401 DOI:10.1007/s11771-011-0852-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HarrisN. J., LammertsmaK.. Tautomerism, ionization, and bond dissociations of 5-Nitro-2,4-Dihydro-3H-1,2,4-Triazolone [J]. Journal of the American Chemical Society, 1996, 118(34): 8048-8055

[2]

KortusJ., PedersonM. R., RichardsonS. L.. Density functional-based prediction of the electronic, structural, and vibrational properties of the energetic molecule: Octanitrocubane [J]. Chemical Physics Letters, 2000, 322(3): 224-230

[3]

ZhangJ., XiaoH.-ming.. Computational studies on the infrared vibrational spectra, thermodynamic properties, detonation properties, and pyrolysis mechanism of octanitrocubane [J]. Journal of Chemical Physics, 2002, 116(24): 10674-10683

[4]

BachR. D., DmitrenkoO.. Strain energy of small ring hydrocarbons. Influence of C-H bond dissociation energies [J]. Journal of the American Chemical Society, 2004, 126(13): 4444-4452

[5]

GibertP. S., JackA., EverettE. G., OscarS., NormanS.. Research towards novel energetic materials [J]. Journal of Energetic Materials, 1986, 4(1/2/3/4): 5-28

[6]

EatonP. E., GilardiR. L., ZhangM. X.. Polynitrocubanes: Advanced high-density, high-energy materials [J]. Advanced Materials, 2000, 12(15): 1143-1148

[7]

XuX. J., XiaoH. M., GongX. D., ZhuW. H.. Computational studies on polynitrohexaazaadmantanes as potential high energy density materials [J]. The Journal of Physical Chemistry A, 2006, 110(17): 5929-5933

[8]

KaustubhA. J., ShridharP. G.. Molecular electrostatic potentials and electron densities in nitrotriprismanes [J]. Journal of Molecular Structure: THEOCHEM, 2005, 724(1/2/3): 87-93

[9]

KennethB. W.. The Concept of strain in organic chemistry [J]. Angewandte Chemie International Edition in English, 1986, 25(4): 312-322

[10]

KitchenD. B., JacksonJ. E., AllenL. C.. Organosilicon rings: Structures and strain energies [J]. The Journal of the American Chemical Society, 1990, 112(9): 3408-3414

[11]

KamletM. J., JacobsS. J.. Chemistry of detonations. I. A simple method for calculating detonation properties of C-H-N-O explosives [J]. Journal of Chemical Physics, 1968, 48(1): 23-35

[12]

FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. GAUSSIAN INCWALLINGFORD CT [Z]. 2004.

[13]

GeorgeP., TrachtmanM., BockC. W., BrettA. M.. Empirical resonance energies for benzene and pyridine [J]. Tetrahedron Letters, 1985, 26(46): 5667-5670

[14]

WibergK. B., OchterskiJ. W.. Comparison of different ab initio theoretical models for calculating isodesmic reaction energies for small ring and related compounds [J]. Journal of Computational Chemistry, 1997, 18(1): 108-114

[15]

NovakI.. Substituent effects on steric strain [J]. Chemical Physics Letters, 2003, 380(9): 258-262

[16]

HrovatD. A., BordenW. T., EatonP. E., KahrB.. A computational study of the interactions among the nitro groups in octanitrocubane [J]. Journal of the American Chemical Society, 2001, 123(7): 1289-1293

[17]

WongM. W., WibergK. B., FrischM. J.. Ab initio calculation of molar volumes: Comparison with experiment and use in solvation models [J]. Journal of Computational Chemistry, 1995, 16(3): 385-394

[18]

BlanksbyS. J., EllisonG. B.. Bond dissociation energies of organic molecules [J]. Accounts of Chemical Research, 2003, 36(4): 255-263

[19]

CheungT. S., LawC. K., LiW. K.. Gaussian-3 heats of formation for (CH)6 isomers [J]. Journal of Molecular Structure: THEOCHEM, 2001, 572(1/2/3): 243-247

[20]

FanX.-w., JuH.-x., XiaQ.-y., XiaoH.-ming.. Strain energies of cubane derivatives with different subsituent groups [J]. Journal of Hazardous Materials, 2008, 151(1): 255-260

[21]

ChungG. S., SchmidtM. W., GordonM. S.. An Ab initio study of potential energy surfaces for N8 isomers [J]. The Journal of Physical Chemistry A, 2000, 104(23): 5647-5650

AI Summary AI Mindmap
PDF

248

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/