Characteristics of non-magnetic nanoparticles in magnetically fluidized bed by adding coarse magnets

Li Zhou , Run-li Diao , Tao Zhou , Hiroyuki Kage , Yoshihide Mawatari

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (5) : 1383 -1388.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (5) : 1383 -1388. DOI: 10.1007/s11771-011-0850-z
Article

Characteristics of non-magnetic nanoparticles in magnetically fluidized bed by adding coarse magnets

Author information +
History +
PDF

Abstract

The fluidization behavior of SiO2, ZnO and TiO2 non-magnetic nanoparticles was investigated in a magnetically fluidized bed (MFB) by adding coarse magnets. The effects of both the amount of coarse magnets and the magnetic field intensity on the fluidization quality of these nanoparticles were investigated. The results show that the coarse magnets added to the bed lead to a reduction in the size of the aggregates formed naturally by the primary nanoparticles. As the macroscopic performances of improved fluidization quality, the bed expansion ratio increases whilst the minimum fluidization velocity decreases with increasing the magnetic field intensity, but for TiO2 nanoparticles there exists a suitable magnetic field intensity of 0.059 6 T. The optimal amounts of coarse magnets for SiO2, ZnO and TiO2 non-magnetic nanoparticles are 40%, 50% and 60% (mass fraction), respectively. The bed expansion results analyzed by the Richardson-Zaki scaling law show that the exponents depend on both the amount of coarse magnets and the magnetic field intensity.

Keywords

non-magnetic nanoparticles / magnetic fluidization / agglomerate / coarse magnet

Cite this article

Download citation ▾
Li Zhou, Run-li Diao, Tao Zhou, Hiroyuki Kage, Yoshihide Mawatari. Characteristics of non-magnetic nanoparticles in magnetically fluidized bed by adding coarse magnets. Journal of Central South University, 2011, 18(5): 1383-1388 DOI:10.1007/s11771-011-0850-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MatsudaS., HatanoH., MuramoyoT., TsutsumiA.. Modeling for size reduction of agglomerates in nanoparticle fluidization [J]. AIChE J, 2004, 50(11): 2763-2771

[2]

ZhouT., LiH. Z., ShinoharaK.. Agglomerating fluidization of group C particles: Major factors of coalescence and breakup of agglomerates [J]. Advanced Powder Technol, 2006, 17(2): 159-166

[3]

ZhouT., LiH. Z.. Estimation of agglomerate size of cohesive particles during fluidization [J]. Powder Technol, 1999, 101(1): 57-62

[4]

YuQ., DaveR., ZhuC.. Enhanced fluidization of nanoparticles in an oscillating magnetic field [J]. AIChE J, 2005, 51(7): 1971-1979

[5]

ZhuC., YuQ., DaveR.. Gas fluidization characteristics of nanoparticle agglomerates [J]. AIChE J, 2005, 51(2): 426-439

[6]

HakimL., PortmanJ., CsaperM., WeimerA.. Aggregation behavior of nanoparticles in fluidized beds [J]. Powder Technol, 2005, 160(3): 149-160

[7]

LiH. Z., TongH.. Multi-scale fluidization of ultrafine powders in a fast-bed-riser/conical-dipleg CFB loop [J]. Chem Eng Sci, 2004, 59(8/9): 1897-1904

[8]

HristovJ. Y.. Magnetic field assisted fluidization—A unified approach: Part 5. A hydrodynamic treatise on liquid-solid fluidized beds [J]. Review of Chem Eng, 2006, 22(4/5): 195-377

[9]

WangX. S., RahmanF., RhodesM. J.. Nanoparticle fluidization and Geldart’s classification [J]. Chem Eng Sci, 2007, 62(13): 3455-3461

[10]

ZhuQ. S., LiH. Z.. Study on magnetic fluidization of group C powders [J]. Powder Technol, 1996, 86(2): 179-185

[11]

HristovJ. Y.. Simple bed expansion correlations for magnetically assisted gas-fluidized tapered beds [J]. International Review of Chemical Engineering-Rapid Communications, 2009, 1(4): 316-323

[12]

YangJ., SlivaA., BanerjeeA., DaveR. N., PfefferR.. Dry particle coating for improving the flowability of cohesive powders [J]. Powder Technol, 2005, 158(1/2/3): 21-33

[13]

LuX. S., LiH. Z.. Fluidization of CaCO3 and Fe2O3 particle mixtures in a transverse rotating magnetic field [J]. Powder Technol, 2000, 107(1/2): 66-78

[14]

ZengP., ZhouT., ChenG. Q., ZhuQ. S.. Behavior of mixed ZnO and SiO2 nano-particles in magnetic field assisted fluidization [J]. China Particuology, 2007, 5: 169-173

[15]

ZengP., ZhouT., YangJ. S.. Behavior of mixtures of nano-particles in magnetically assisted fluidized bed [J]. Chem Eng and Process, 2008, 47(1): 101-108

[16]

HristovJ. Y.. Magnetic field assisted fluidization—A unified approach: Part 7. Mass Transfer: Chemical reactors, basic studies and practical implementations thereof [J]. Reviews in Chemical Engineering, 2009, 25(1/2/3): 1-254

[17]

RichardsonJ. F., ZakiW. N.. Sedimentation and fluidization: Part I [J]. Transactions of the Institution of Chemical Engineers, 1954, 32: 35-54

[18]

ChenG. Q., ZhouT., LiH. Z.. Characteristics of anthraquinone hydrogenation catalysts in a liquid-solid fluidized bed [J]. The Canadian J of Chem Eng, 2008, 86: 288-292

[19]

YangJ. S., ZhouT., SongL. Y.. Agglomerating vibro-fluidization behavior of nano-particles [J]. Advanced Powder Technol, 2009, 20(2): 158-163

[20]

WangY., GuG., WeiF., WuJ.. Fluidization and agglomerate structure of SiO2 nanoparticles [J]. Powder Technol, 2002, 124(1/2): 152-159

[21]

ValverdeJ. M., CastellanosA.. Fluidization of nanoparticles: A modified Richardson-Zaki law [J]. AIChE J, 2006, 52(2): 838-842

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/