Modulating absorption band of triangular silver nanoplates in aqueous solvent and on substrates using tannin as reducing agent

Zao Yi , Gao Niu , Shang-jun Han , Jiang-shan Luo , Shan-jun Chen , Xin Ye , You-gen Yi , Yong-jian Tang

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (5) : 1365 -1370.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (5) : 1365 -1370. DOI: 10.1007/s11771-011-0847-7
Article

Modulating absorption band of triangular silver nanoplates in aqueous solvent and on substrates using tannin as reducing agent

Author information +
History +
PDF

Abstract

Triangular silver nanoplates in aqueous solvent and on the surface of quartz substrate have been synthesized by seed-mediated growth approach in the presence of tannin. It was found that both the amount of tannin and the small triangular silver nanoplate seeds added to the growth solution are the key factors to modulation absorption band of triangular silver nanoplates. The optical in-plane dipole surface plasmon resonance (SPR) bands of these Ag nanoplates can be tuned from 608 nm to 980 nm via tannin deoxidization method. The formation mechanism of triangular silver nanoplates was proposed. The tannin deoxidization method realizes a convenient modulation of the absorption band of Ag nanostructures within the visible near-infrared (IR) region both in aqueous solvent and on substrates under mild conditions.

Keywords

silver nanoplate / tannin / seed-mediated growth / surface plasmon resonance / near-infrared region

Cite this article

Download citation ▾
Zao Yi, Gao Niu, Shang-jun Han, Jiang-shan Luo, Shan-jun Chen, Xin Ye, You-gen Yi, Yong-jian Tang. Modulating absorption band of triangular silver nanoplates in aqueous solvent and on substrates using tannin as reducing agent. Journal of Central South University, 2011, 18(5): 1365-1370 DOI:10.1007/s11771-011-0847-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

PerezJ. J., SantosI. P., MarzanL.M., PaulM.. Gold nanorods: Synthesis, characterization and applications [J]. Coordin Chem Rev, 2005, 249: 1870-1901

[2]

KellyK. L., CoronadoE., ZhaoL. L., GeorgeC. S.. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment [J]. J Phys Chem B, 2003, 107(3): 668-677

[3]

TianZ. Q., RenB., WuD. Y.. Surface-enhanced raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures [J]. J Phy Chem B, 2002, 37(106): 9463-9483

[4]

DelC. T., ArocaR. D. S., RodriguezJ. A.. Langmuir-blodgett mixed films of titanyl(IV) pthalocyanine and arachidic acid: Molecular orientation and film structure [J]. Langmuir, 2003, 19(9): 3747-3751

[5]

KaleleS., GosaviS. W., UrbanJ., KuikiarniS. K.. Nanoshell particles: Synthesis, properties and applications [J]. Curr Sci (India), 2006, 91(8): 1038-1052

[6]

ChenJ., WileyB., LiZ., CampbellD., SaekiF., CanG. H., AnL., LeeJ., LiX., XiaY.. Gold nanocages engineering: Their structure for biomedical applications [J]. Adv Mater, 2005, 17(18): 2255-2261

[7]

ShankarS. S., RaiA., AhmadA., MuraliS.. Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings [J]. Chem Mater, 2005, 17(3): 566-572

[8]

JanaN. R., GearheartL., MurphyC. J.. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template [J]. Adv Mater, 2001, 13(18): 1398-1393

[9]

ChenS. H., CarrollD. L.. Silver nanoplates: Size control in two dimensions and formation mechanisms [J]. J Phys Chem B, 2004, 108(18): 5500-5506

[10]

XueC., MirkinC. A.. pH-switchable silver nanoprism growth pathways [J]. Angew Chem, 2007, 119(10): 2082-2084

[11]

AslanK., LakowiczJ. R., GeddesC. D.. Rapid deposition of triangular silver nanoplates on planar surfaces: Application to metal-enhanced fluorescence [J]. J Phys Chem B, 2005, 109(13): 6247-6251

[12]

MétrauxG. S., MirkinC. A.. Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness [J]. Adv Mater, 2005, 17(4): 412-415

[13]

GuoB., TangY.-j., LuoJ.-s., ChengJ.-ping.. Study on absorption and emission spectroscopy of triangular silver nanoplates prepared by dual reduction method [J]. Precious Metals, 2008, 29(2): 5-10

[14]

MaillardM., HuangP., BrusL.. Ag nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+ [J]. Nano Lett, 2003, 3(11): 1611-1615

[15]

ChenS., CarrollD. L.. Silver nanoplates: Size control in two dimensions and formation mechanisms [J]. J Phys Chem B, 2004, 108(18): 5500-5506

[16]

KellyK. L., CoronadoE., ZhaoL. L., GeorgeC. S.. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment [J]. J Phys Chem B, 2003, 107(3): 668-677

[17]

JinR. C., CaoY. W., MirkinC. A.. Photoinduced conversion of silver nanospheres to nanoprisms [J]. Science, 2001, 294(30): 1901-1903

[18]

MillstoneJ. E., MetrauxG. S., MirkinC. A.. Controlling the edge length of gold nanoprisms via a seed-mediated approach [J]. Adv Funct Mater, 2006, 16(10): 1209-1214

[19]

YiZ., TangY.-j., YiY.-g., LiK., LuoJ.-s., LiX.-b., ZhangJ.-b., YeXin.. Preparation of hollow silver microspheres and their characterization [J]. High Power Laser and Particle Beams, 2009, 21(9): 1354-1359

[20]

JiangX. C., YuA. B.. Silver Nanoplates: A highly sensitive material toward inorganic anions [J]. Langmuir, 2008, 24(8): 4300-4309

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/