Effect of TiO2 addition on zirconia-mullite composites fabricated by in-situ controlled crystallization of Si-Al-Zr-O amorphous bulk

Shu-quan Liang , Rong Liu , Xiao-ping Tan , Di-kai Guan

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (5) : 1321 -1325.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (5) : 1321 -1325. DOI: 10.1007/s11771-011-0840-1
Article

Effect of TiO2 addition on zirconia-mullite composites fabricated by in-situ controlled crystallization of Si-Al-Zr-O amorphous bulk

Author information +
History +
PDF

Abstract

Zirconia-mullite composite ceramics were fabricated by in-situ controlled crystallization of Si-Al-Zr-O amorphous bulk. The effects of TiO2 addition on the fabrication of zirconia-mullite composites were investigated. The ultra-fine zirconia-mullite composite ceramics were prepared from the amorphous bulk treated at 980 °C for nucleation and 1 140 °C for crystallization. The phase transformation of the ceramics was examined using differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). The microstructural features of the samples were evaluated with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and transmission electron microscopy (TEM). The mechanical properties were also determined using Vickers indentation. The results show that the TiO2 additives with mass fraction of 1%–7% reduce the formation temperature of t-ZrO2 and mullite. When the mass fraction of TiO2 additives is less than 5%, the phases do not change, and most of TiO2 dissolves in ZrO2. When the mass fraction of TiO2 additives is over 5%, the excessive TiO2 forms a new phase, ZrTiO4. Meanwhile, the results also show that TiO2 additives have a great impact on the microstructure and mechanical properties of zirconia-mullite composites. As the TiO2 content increases from 1% to 7% (mass fraction), the grain size and the Vickers hardness of zirconia-mullite composites increase. The composite with 3% (mass fraction) TiO2 additives attains relatively higher fracture toughness.

Keywords

TiO2 / ZrO2 / mullite / comoposites

Cite this article

Download citation ▾
Shu-quan Liang, Rong Liu, Xiao-ping Tan, Di-kai Guan. Effect of TiO2 addition on zirconia-mullite composites fabricated by in-situ controlled crystallization of Si-Al-Zr-O amorphous bulk. Journal of Central South University, 2011, 18(5): 1321-1325 DOI:10.1007/s11771-011-0840-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SchineiderH., SchreuerJ., HildmannB.. Structure and properties of mullite—A review [J]. Am Ceram Soc, 2008, 28(2): 329-344

[2]

MedvedovskiE.. Alumina-mullite ceramics for structural applications [J]. Ceramics International, 2006, 32(4): 369-375

[3]

LanF. T., LiK. Z., LiH. J., FuQ. G.. A cordierite mullite anti-oxidation coating for carbon composite [J]. Carbon, 2007, 45(13): 2692-2716

[4]

ZhangH. Y., MaljkovicN., MitchellB. S.. Structure and interfacial properties of nanocrystalline alumina/mullite composites [J]. Mater Sci Eng A, 2002, 326(2): 317-323

[5]

GarridoL. B., AgliettiE. F.. Reaction-sintered mullite-zirconia composites by colloidal processing of alumina-zircon-CeO2 mixtures [J]. Mater Sci Eng A, 2004, 369(1/2): 250-257

[6]

GarridoL. B., AgliettiE. F., MartorelloL., CamerucciM. A., CavalieriA. L.. Hardness and fracture toughness of mullite-zirconia composites obtained by slip casting [J]. Mater Sci Eng A, 2006, 419(1/2): 290-296

[7]

AnanthakumarS., JayasankarM., WarrierK. G. K.. Microstructural, mechanical and thermal characterization of sol-gel derived aluminium titanate-mullite ceramic composites [J]. Acta Materialia, 2006, 54(11): 2965-2973

[8]

KhorK. A., YuL. G., LiY.. Spark plasma reaction sintering of ZrO2-mullite composites from plasma spheroidized zircon/alumina powers [J]. Mater Sci Eng A, 2003, 339(1/2): 286-296

[9]

EbadzadehT., GhasemiE.. Effect of TiO2 addition on the stability of t-ZrO2 in mullite-ZrO2 composites prepared from various starting materials [J]. Ceram int, 2002, 28(4): 447-450

[10]

HongJ. S., HuangX. X., GuoJ. K., LiB. S., GuiL. H.. Strengthening and toughening of mullite ceramics by SiC particles and Y-TZP [J]. J Inorg Mater, 1990, 5(4): 340-345

[11]

WangJ., KouH. M., KouL. X. J., PanY. B., GuoJ. K.. Reinforcement of mullite matrix with multi-walled carbon nanotubes [J]. Ceram int, 2007, 33(5): 719-722

[12]

JinX. H., GaoL., KanY. M., ChenY. R., YuanQ. M.. Influence of Nb2O5 on the mechanical performances and toughening mechanism of ZrO2 in ZTM-Al2O3 [J]. J Inorg Mater, 2000, 15(6): 1009-1014

[13]

HuangY. F., XieG. S., XiaoH. N.. The influence of CeO2 in ZTM ceramics prepared by in-situ sintering [J]. Ceramics, 2006, 6: 9-11

[14]

LiangS. Q., LiS., TanX. P.. Crystallization behavior of Si-Al-Zr-O amorphous bulk with higher zirconium [J]. Chin J Nonferrous Met, 2005, 15(8): 1189-1194

[15]

PontonC. B., RawlingsR. D.. Mechanical properties of siliceramic glass-ceramics [J]. Mater Sci Tech, 1989, 5(9): 865-872

[16]

SchullerK. H.. Reaction between mullite and glassy phase in porcelains [J]. Br Ceram Soc, 1964, 63(2): 103-117

[17]

ComerJ. J.. Electron microscopy studies of mullite development in fired kaolinites [J]. Am Ceram Soc, 1960, 43(7): 378-384

[18]

HongS. H., MessingG. L.. Mullite transformation kinetics in P2O5−, TiO2− and B2O3-doped aluminosilicate gels [J]. Am Ceram Soc, 1997, 80(6): 1551-1559

[19]

HongS. H., MessingG. L.. Anisotropic grain growth in diphasic-gel-derived titania-doped mullite [J]. Am Ceram Soc, 1998, 81(5): 1269-1277

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/