Preparation of microsized single-crystalline Co3O4 by high-temperature hydrolysis

Qi-hou Li , Zhi-yong Liu , Zhi-hong Liu , Lei Hu

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (4) : 993 -997.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (4) : 993 -997. DOI: 10.1007/s11771-011-0792-5
Article

Preparation of microsized single-crystalline Co3O4 by high-temperature hydrolysis

Author information +
History +
PDF

Abstract

Microsized single-crystalline Co3O4 has been synthesized by high-temperature hydrolysis of CoCl2·2H2O at 600 °C. The samples were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results reveal that the as-prepared powders are microsized single-crystalline Co3O4 with cubic spinel structure. An increase in the high-temperature hydrolysis time results in the evolution of particle shapes from cube to quasi-sphere, and then to octahedron. The effect of NaCl additive on the surface morphologies of Co3O4 particles was experimentally investigated. The results indicate that the NaCl additive acts as an inert disperse phase in the high-temperature hydrolysis, and prevents the aggregation of Co3O4 particles effectively.

Keywords

Co3O4 / crystal structure / hydrolysis / surface morphology

Cite this article

Download citation ▾
Qi-hou Li, Zhi-yong Liu, Zhi-hong Liu, Lei Hu. Preparation of microsized single-crystalline Co3O4 by high-temperature hydrolysis. Journal of Central South University, 2011, 18(4): 993-997 DOI:10.1007/s11771-011-0792-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GaponovA. V., GlotA. B., IyonA. I., ChackA. M., JimenezS. G.. Varistor and humidity-sensitive properties of SnO2-Co3O4-Nb2O5-Cr2O3 ceramics with V2O5 addition [J]. Materials Science and Engineering B, 2007, 145: 76-84

[2]

MakhloufS. A.. Magnetic properties of Co3O4 nanoparticles [J]. Magn Magn Mater, 2002, 246: 184-190

[3]

SubhashT., AshokK., JitendraK.. Optical, electrical and magnetic properties of Co3O4 nanocrystallites obtained by thermal decomposition of sol-gel derived oxalates [J]. Mater Sci Eng B-Solid, 2009, 164: 30-37

[4]

LioyyaL. F., CarloG. D., PantaleoG., DdganelloG., MerloneB. E., PidriaM.. Honeycomb supported Co3O4/CeO2 catalyst for CO/CH4 emissions abatement: Effect of low Pd Pt content on the catalytic activity [J]. Catal Commun, 2007, 8: 299-304

[5]

GuoH.-j., LiX.-h., XieJ., WangZ.-x., PengW.-j., SunQ.-M.. Effects of Ni substitution on the properties of Co3O4/graphite composites as anode of lithium ion batteries [J]. Energ Convers Manage, 2010, 51: 247-252

[6]

BaydiM. E., PoilleratG., RehspringerJ. L., GautierJ. L., KoenigJ. F., ChartieP.. A sol-gel route for the preparation of Co3O4 catalyst for oxygen electrocatalysis in alkaline medium [J]. J Solid State Chem, 1994, 109: 281-288

[7]

NiuM.-t., WangY.-s., ChengY., ChenG.-x., CuiL.-feng.. Fabrication of Co3O4 cubic nanoframes: Facet-preferential chemical etching of Fe3+ ions to Co3O4 nanocubes [J]. Mater Lett, 2009, 63: 837-839

[8]

KimD. Y., JuS. H., KooH. Y., HongS. K., KangY. C.. Synthesis of nanosized Co3O4 particles by spray pyrolysis [J]. J Alloy Compd, 2006, 417: 254-258

[9]

TianZ.-y., BahlawaneN., QiF., KatharinaK. H.. Catalytic oxidation of hydrocarbons over Co3O4 catalyst prepared by CVD [J]. Catal Commun, 2009, 11: 118-122

[10]

ZhaoZ. W., GuoZ. P., LiuH. K.. Non-aqueous synthesis of crystalline Co3O4 powders using alcohol and cobalt chloride as a versatile reaction system for controllable morphology [J]. J Power Sources, 2005, 147: 264-268

[11]

TripathyS. K., ChristyM., ParkN. H., SuhE. K., AnandS., YuY. T.. Hydrothermal synthesis of single-crystalline nanocubes of Co3O4 [J]. Mater Lett, 2008, 62: 1006-1009

[12]

YangL.-x., ZhuY.-j., LiL., ZhangL., TongH., WangW.-W.. Low temperature synthesis of Mn3O4 polyhedral nanocrystals and magnetic study [J]. Eur J Inorg Chem, 2006, 23: 4787-4792

[13]

TengY.-h., YamamotoS., KusanoY., AzumaM.. One- pot hydrothermal synthesis of uniformly cubic Co3O4 nanocrystals [J]. Mater Lett, 2010, 64: 239-242

[14]

MasoudS. N., AfsanehK., FatemehD.. Synthesis and characterization of cobalt oxide nanoparticles by thermal treatment process [J]. Inorg Chim Acta, 2009, 362: 4937-4942

[15]

ZhangY.-g., LiuY., FuS.-q., GuoF., QianY.-tai.. Morphology-controlled synthesis of Co3O4 crystals by soft chemical method [J]. Mater Chem Phys, 2007, 104: 166-171

[16]

LianS.-y., WangE.-b., GaoL., XuLin.. Fabrication of single-crystalline Co3O4 nanorods via a low-temperature solvothermal process [J]. Mater Lett, 2006, 61: 3893-3896

[17]

TangX.-f., LiJ.-h., HaoJ.-ming.. Synthesis and characterization of spinel Co3O4 octahedra enclosed by the {111} facets [J]. Mater Res Bull, 2008, 43: 2912-2918

[18]

KeX.-f., CaoJ.-M., ZhengM.-b., ChenY.-p., LiuJ.-s., JiG.-bin.. Molten salt synthesis of single-crystal Co3O4 nanorods [J]. Mater Lett, 2007, 61: 3901-3903

[19]

DieterH., JensR.. Organic nanoparticles in the aqueous phase-theory [J]. Chem Int Ed, 2001, 40: 4330-4361

[20]

WangZ.-lin.. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies [J]. J Phys Chem B, 2000, 104(3): 1153-1175

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/