Hydriding and dehydriding kinetics of nanocrystalline and amorphous Mg2Ni1−xMnx (x=0−0.4) alloys prepared by melt spinning

Yang-huan Zhang , Yan Qi , Hui-ping Ren , Zhi-hong Ma , Shi-hai Guo , Dong-liang Zhao

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (4) : 985 -992.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (4) : 985 -992. DOI: 10.1007/s11771-011-0791-6
Article

Hydriding and dehydriding kinetics of nanocrystalline and amorphous Mg2Ni1−xMnx (x=0−0.4) alloys prepared by melt spinning

Author information +
History +
PDF

Abstract

A partial substitution of Ni by Mn was implemented in order to improve the hydriding and dehydriding kinetics of the Mg2Ni-type alloys. The nanocrystalline and amorphous Mg2Ni-type Mg2Ni1−xMnx (x=0, 0.1, 0.2, 0.3, 0.4) alloys were synthesized by the melt-spinning technique. The structures of the as-cast and spun alloys were studied by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The hydrogen absorption and desorption kinetics of the alloys were measured with an automatically controlled Sieverts apparatus. The results show that the as-spun Mn-free alloy holds a typical nanocrystalline structure, whereas the as-spun alloys containing Mn display a nanocrystalline and amorphous structure, confirming that the substitution of Mn for Ni intensifies the glass forming ability of the Mg2Ni-type alloy. The hydrogen absorption and desorption capacities and kinetics of the alloys increase with increasing the spinning rate, for which the nanocrystalline and amorphous structure produced by the melt spinning is mainly responsible. The substitution of Mn for Ni evidently improves the hydrogen desorption performance. The hydrogen desorption capacities of the as-cast and spun alloys rise with the increase in the percentage of Mn substitution.

Keywords

Mg2Ni-type alloy / melt-spinning / structure / hydriding kinetics / dehydriding kinetics

Cite this article

Download citation ▾
Yang-huan Zhang, Yan Qi, Hui-ping Ren, Zhi-hong Ma, Shi-hai Guo, Dong-liang Zhao. Hydriding and dehydriding kinetics of nanocrystalline and amorphous Mg2Ni1−xMnx (x=0−0.4) alloys prepared by melt spinning. Journal of Central South University, 2011, 18(4): 985-992 DOI:10.1007/s11771-011-0791-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

RossD. K.. Hydrogen storage: The major technological barrier to the development of hydrogen fuel cell cars [J]. Vacuum, 2006, 80: 1084-1089

[2]

WooJ. H., LeeK. S.. Electrode characteristics of nanostructured Mg2Ni-type alloys prepared by mechanical alloying [J]. J Electrochem Soc, 1999, 146(3): 819-823

[3]

KyoiD., SakaiT., KitmuraN., UedaA., TanaseS.. Synthesis of FCC Mg-Ta hydrides using GPa hydrogen pressure method and their hydrogen-desorption properties [J]. Journal of Alloys and Compounds, 2008, 463: 306-310

[4]

PaladeP., SartoriS., MaddanenaA., PrincipiG., Lo RussoS., LazarescuM., SchinteieG., KuncserV., FilotiG.. Hydrogen storage in Mg-Ni-Fe compounds prepared by melt spinning and ball milling [J]. Journal of Alloys and Compounds, 2006, 415: 170-176

[5]

SongM. Y., YimC. D., BaeJ. S., MummdD. R., HongS. H.. Preparation by gravity casting and hydrogen-storage properties of Mg-23.5 wt.%Ni-(5, 10 and 15 wt.%)La [J]. Journal of Alloys and Compounds, 2008, 463: 143-147

[6]

LiuX. F., ZhuY. F., LiL. Q.. Structure and hydrogenation properties of nanocrystalline Mg2Ni prepared by hydriding combustion synthesis and mechanical milling [J]. Journal of Alloys and Compounds, 2008, 455: 197-202

[7]

LiuF. J., SudaS.. A method for improving the long-term storability of hydriding alloys by air water exposure [J]. Journal of Alloys and Compounds, 1995, 231: 742-750

[8]

CzujkoT., VarinR. A., ChiuC., WronskiZ.. Investigation of the hydrogen desorption properties of Mg+10wt.%X (X=V, Y, Zr) submicrocrystalline composites [J]. Journal of Alloys and Compounds, 2006, 414: 240-247

[9]

SakintunaB., Lamari-darkrimF., HirscherM.. Metal hydride materials for solid hydrogen storage: A review [J]. International Journal of Hydrogen Energy, 2007, 32: 1121-1140

[10]

LiangG. Y.. Synthesis and hydrogen storage properties of Mg-based alloys [J]. Journal of Alloys and Compounds, 2004, 370: 123-128

[11]

SongM. Y., KwonS. N., BaeJ. S., HongS. H.. Hydrogen-storage properties of Mg-23.5Ni-(0 and 5)Cu prepared by melt spinning and crystallization heat treatment [J]. International Journal of Hydrogen Energy, 2008, 33: 1711-1718

[12]

SavyakM., HirnyjS., BauerH. D., UhlemannM., EckertJ., SchultzL., GebertA.. Electrochemical hydrogenation of Mg65Cu25Y10 metallic glass [J]. Journal of Alloys and Compounds, 2004, 64: 229-237

[13]

SpassovT., KöstrU.. Thermal stability and hydriding properties of nanocrystalline melt-spun Mg63Ni30Y7 alloy [J]. Journal of Alloys and Compounds, 1998, 279: 279-286

[14]

HuangL. J., LiangG. Y., SunZ. B., WuD. C.. Electrode properties of melt-spun Mg-Ni-Nd amorphous alloys [J]. Journal of Power Sources, 2006, 160: 684-687

[15]

ZhangY. H., LiuZ. C., LiB. W., MaZ. H., GuoS. H., WangX. L.. Structure and electrochemical performances of Mg2Ni1−xMnx (x=0−0.4) electrode alloys prepared by melt spinning [J]. Electrochimica Acta, 2010, 56: 427-434

[16]

YamauraS. I., KimH. Y., KimuraH., InoueA., ArataY.. Thermal stabilities and discharge capacities of melt-spun Mg-Ni-based amorphous alloys [J]. Journal of Alloys and Compounds, 2002, 339: 230-235

[17]

InoueA., MasumotoT.. Mg-based amorphous alloys [J]. Material Science and Engineering A, 1993, 173: 1-8

[18]

ChenH. S.. Thermodynamic considerations on the formation and stability of metallic glasses [J]. Acta Materialia, 1974, 22(12): 1505-1511

[19]

FriedlmeierG., ArakawaM., HiraiaT., AkibaE.. Preparation and structural, thermal and hydriding characteristics of melt-spun Mg-Ni alloys [J]. Journal of Alloys and Compounds, 1999, 292: 107-117

[20]

HongS. H., NaY. S., KwonS. N., BaeJ. S., SongM. Y.. Preparation and hydrogen-storage properties of 90(Mg-23.5Ni)-10Ta2O5 alloy by melt spinning and oxide addition [J]. Journal of Alloys and Compounds, 2008, 465: 512-516

[21]

ZhongG., PopovB. N., WhiteR. E.. Electrochemical determination of the diffusion coefficient of hydrogen through an LaNi4.25Al0.75 electrode in alkaline aqueous solution [J]. Journal of the Electrochemical Society, 1995, 142: 2695-2698

[22]

SpassovT., KösterU.. Hydrogenation of amorphous and nanocrystalline Mg-based alloys [J]. Journal of Alloys and Compounds, 1999, 287: 243-250

[23]

OrimoS., FujiiH.. Materials science of Mg-Ni-based new hydrides [J]. Applied Physics A, 2001, 72: 167-186

[24]

TakahashiY., YukawaH., MorinagaM.. Alloying effects on the electronic structure of Mg2Ni intermetallic hydride [J]. Journal of Alloys and Compounds, 1996, 242: 98-107

AI Summary AI Mindmap
PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/