Electrochemical performance of LiFePO4/(C+Fe2P) composite cathode material synthesized by sol-gel method

Quan-qi Chen , Xiao-shuan Li , Jian-ming Wang

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (4) : 978 -984.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (4) : 978 -984. DOI: 10.1007/s11771-011-0790-7
Article

Electrochemical performance of LiFePO4/(C+Fe2P) composite cathode material synthesized by sol-gel method

Author information +
History +
PDF

Abstract

A LiFePO4/(C+Fe2P) composite cathode material was prepared by a sol-gel method using Fe(NO3)3·9H2O, LiAc·H2O, NH4H2PO4 and citric acid as raw materials, and the physical properties and electrochemical performance of the composite cathode material were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical tests. The Fe2P content, morphology and electrochemical performance of LiFePO4/(C+Fe2P) composite depend on the calcination temperature. The optimized LiFePO4/(C+Fe2P) composite is prepared at 650 °C and the optimized composite exhibits sphere-like morphology with porous structure and Fe2P content of about 3.2% (mass fraction). The discharge capacity of the optimized LiFePO4/(C+Fe2P) at 0.1C is 156 and 161 mA·h/g at 25 and 55 °C, respectively, and the corresponding capacity retentions are 96% after 30 cycles; while the capacity at 1C is 142 and 149 mA·h/g at 25 and 55 °C, respectively, and the capacity still remains 135 and 142 mA·h/g after 30 cycles at 25 and 55 °C, respectively.

Keywords

LiFePO4/(C+Fe2P) composite / sol-gel / sphere-like morphology / electrochemical performance

Cite this article

Download citation ▾
Quan-qi Chen, Xiao-shuan Li, Jian-ming Wang. Electrochemical performance of LiFePO4/(C+Fe2P) composite cathode material synthesized by sol-gel method. Journal of Central South University, 2011, 18(4): 978-984 DOI:10.1007/s11771-011-0790-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

PadhiA. K., NanjundaswamyK. S., GoodenoughJ. B.. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194

[2]

BelharouakI., JohnsonC., AmineK.. Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4 [J]. Electrochemistry Communications, 2005, 7(10): 983-988

[3]

ZhangB., LiX.-h., LuoW.-b., WangZ.-xing.. Electrochemical properties of LiFe1−xMgxPO4 for cathode materials of lithium ion batteries [J]. Journal of Central South University: Science and Technology, 2006, 37(6): 1094-1097

[4]

GaberscekM., DominkoR., JamnikJ.. Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes [J]. Electrochemistry Communications, 2007, 9(12): 2278-2283

[5]

MiC. H., CaoY. X., ZhangX. G., ZhaoX. B., LiH. L.. Synthesis and characterization of LiFePO4/(Ag+C) composite cathodes with nano-carbon webs [J]. Powder Technology, 2008, 181(3): 301-306

[6]

ChangZ.-R., H.-J., TangH.-W., LiH.-J., YuanX.-Z., WangH.-jiang.. Synthesis and characterization of high-density LiFePO4/C composites as cathode materials for lithium-ion batteries [J]. Electrochimica Acta, 2009, 54(20): 4595-4599

[7]

DingY., JiangY., XuF., YinJ., RenH., ZhuoQ., LongZ., ZhangP.. Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method [J]. Electrochemistry Communications, 2010, 12(1): 10-13

[8]

HuangH., YinS. C., KerrT., TaylorN., NazarL. F.. Nanostructured composites: A high capacity, fast rate Li3V2(PO4)3/carbon cathode for rechargeable lithium batteries [J]. Advanced Materials, 2002, 14(21): 1525-1528

[9]

YinS. C., GrondeyH., StrobelP., AnneM., NazarL. F.. Electrochemical property: Structure relationships in monoclinic Li3−yV2(PO4)3 [J]. Journal of the American Chemical Society, 2003, 125(34): 10402-10411

[10]

ChenQ.-q., WangJ.-m., TangZ., HeW.-c., ShaoH.-b., ZhangJ.-qing.. Electrochemical performance of the carbon coated Li3V2(PO4)3 cathode material synthesized by a sol-gel method [J]. Electrochimica Acta, 2007, 52(16): 5251-5257

[11]

ZhongS.-k., YinZ.-l., WangZ.-x., ChenQ.-yuan.. Synthesis and characterization of triclinic structural LiVPO4F as possible 4.2 V cathode materials for lithium ion batteries [J]. Journal of Central South University of Technology, 2007, 14(3): 340-343

[12]

BarkerJ., SaidiM. Y., SwoyerJ. L.. Electrochemical insertion properties of the novel lithium vanadium fluorophosphate, LiVPO4F [J]. Journal of the Electrochemical Society, 2003, 150(10): A1394-A1398

[13]

BarkerJ., GoverR. K. B., BurnsP., BryanA., SaidiM. Y., SwoyerbJ. L.. Performance evaluation of lithium vanadium fluorophosphate in lithium metal and lithium-ion cells [J]. Journal of the Electrochemical Society, 2005, 152(9): A1776-A1779

[14]

XuY.-b., LuY.-j., YanL., YangZ.-y., YangR.-dong.. Synthesis and effect of forming Fe2P phase on the physics and electrochemical properties of LiFePO4/C materials [J]. Journal of Power Sources, 2006, 160(1): 570-576

[15]

KimC. W., ParkJ. S., LeeK. S.. Effect of Fe2P on the electron conductivity and electrochemical performance of LiFePO4 synthesized by mechanical alloying using Fe3+ raw material [J]. Journal of Power Sources, 2006, 163(1): 144-150

[16]

WangL. N., ZhanX. C., ZhangZ. G., ZhangK. L.. A soft chemistry synthesis routine for LiFePO4-C using a novel carbon source [J]. Journal of Alloys and Compounds, 2008, 456(1/2): 461-465

[17]

MichaelT.. An expected conductor [J]. Nature Materials, 2008, 1(2): 81-82

[18]

SurendraK. M., JudithG., OrtalH., EllaZ., ThierryD., JamesH. M., IvanE., AndreasK., BorisM., AurbachD.. LiMn0.8Fe0.2PO4: An advanced cathode material for rechargeable lithium batteries [J]. Angewandte Chemie International Edition, 2009, 48: 8559-8563

[19]

YinX.-g., HuangK.-l., LiuS.-q., WangH.-y., WangHao.. Preparation and characterization of Na-doped LiFePO4/C composites as cathode materials for lithium-ion batteries [J]. Journal of Power Sources, 2010, 195(13): 4308-4312

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/