Synthesis and electrochemical performance of TiO2-B as anode material

Xin-yu Wang , Ke-yu Xie , Jie Li , Yan-qing Lai , Zhi-an Zhang , Ye-xiang Liu

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (2) : 406 -410.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (2) : 406 -410. DOI: 10.1007/s11771-011-0711-9
Article

Synthesis and electrochemical performance of TiO2-B as anode material

Author information +
History +
PDF

Abstract

TiO2-B was synthesized by solid-state reaction. The structures, surface morphologies and electrochemical performances of TiO2-B were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurement, respectively. The effects of calcining temperature, molar ratio of K2O to TiO2 and calcining time on the characteristics of TiO2-B were investigated. The results show that the calcining time exerts a significant influence on the electrochemical performances of TiO2-B. The TiO2-B is obtained with good crystal structure and suitable size by using K2Ti4O9, which is prepared at 950°C for 24 h under the condition of x(K2O)/x(TiO2)=1:3.5. The TiO2-B delivers all initial discharge capacity of 231.6 mA·h/g. And the rate capacity is 73.2 mA·h/g at 1 675 mA/g, which suggests that TiO2-B is a promising anode material for the lithium ion batteries.

Keywords

lithium ion battery / TiO2-B / solid state method / anode material

Cite this article

Download citation ▾
Xin-yu Wang, Ke-yu Xie, Jie Li, Yan-qing Lai, Zhi-an Zhang, Ye-xiang Liu. Synthesis and electrochemical performance of TiO2-B as anode material. Journal of Central South University, 2011, 18(2): 406-410 DOI:10.1007/s11771-011-0711-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AurbachD., ZinigradE., CohenY., TellerH.. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J]. Solid State Ionics, 2002, 148(3/4): 405-416

[2]

DellR. M.. Batteries fifty years of materials development [J]. Solid State Ionics, 2000, 134(1): 139-158

[3]

TarasconJ. M., ArmandM.. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 414: 359-367

[4]

WangD., XuH.-y., GuM., ChenC.-hua.. Li2CuTi3O8-Li4Ti5O12 double spinel anode material with improved rate performance for Li-ion batteries [J]. Electrochemistry Communications, 2009, 11(1): 50-53

[5]

JuS. H., KangY. C.. Effects of preparation conditions on the electrochemical and morphological characteristics of Li4Ti5O12 powders prepared by spray pyrolysis [J]. Journal of Power Sources, 2009, 189(1): 185-190

[6]

ShuJie.. Li-Ti-O compounds and carbon-coated Li-Ti-O compounds as anode materials for lithium ion batteries [J]. Electrochimica Acta, 2009, 54(10): 2869-2876

[7]

InabaM., ObaY., NiinaF., MurotaY., OginoY., TasakaA., HirotaK.. TiO2(B) as a promising high potential negative electrode for large-size lithium-ion batteries [J]. Journal of Power Sources, 2009, 189(1): 580-584

[8]

WagemakerM., KearleyG. J., WellA. A., MutkaH., MulderF. M.. Multiple Li positions inside oxygen octahedral in lithiated TiO2 anatase [J]. Journal of the American Chemical Society, 2003, 125(3): 840-848

[9]

ArmstrongA. R., ArmstrongG., CanalesJ., GarciaR., BruceP.. Lithium-ion intercalation into TiO2-B nanowires [J]. Advanced Materials, 2005, 17(7): 862-865

[10]

ArmstrongA. R., ArmstrongG., CanalesJ., BruceP.. TiO2(B) nanotubes as negative electrodes for rechargeable lithium batteries [J]. Electrochemical and Solid-State Letters, 2006, 9(3): A139-A143

[11]

LiQ.-j., ZhangJ.-w., LiuB.-b., LiM., LiuR., LiX.-l., MaH.-l., YuS.-d., WangL., ZouY.-g., LiZ.-p., ZouB., CuiT., ZouG.-tian.. Synthesis of high-density nanocavities inside TiO2-B nanoribbons and their enhanced electrochemical lithium storage properties [J]. Inorganic Chemistry, 2008, 47(21): 9870-9873

[12]

LiQ.-j., ZhangJ.-w., LiuB.-b., LiM., YuS.-d., WangL., LiZ.-p., LiuD.-d., HouY.-y., ZouY.-g., ZouB., CuiT., ZouG.-tian.. Synthesis and electrochemical properties of TiO2-B@C core-shell nanoribbons [J]. Crystal Growth & Design, 2008, 8(6): 1812-1814

[13]

ChenJ.-m., WangQ.-l., HuangZ.-l., XuT., GaoS.-min.. The research of K2Ti4O9 whisker prepared by a sintering method [J]. Journal of Wuhan Institute of Technology, 2007, 29(2): 54-56

[14]

BaoN.-z., FengX., LuX.-h., YangZ.-hong.. Study on the formation and growth of potassium titanate whiskers [J]. Journal of Materials Science, 2002, 37(14): 3035-3043

[15]

ProchazkaJ., KavanL., ZukalovaM., FrankO., KalbacM., ZukalA., KlementovaM., CarboneD., GraetzelM.. Novel synthesis of the TiO2(B) multilayer templated films [J]. Chemistry of Materials, 2009, 21(8): 1457-1464

[16]

WangD.-h., ChoiD. W., YangZ.-g., ViswanathanV. V., NieZ., WangC.-m., SongY.-j., ZhangJ.-g., LiuJun.. Synthesis and li-ion insertion properties of highly crystalline mesoporous rutile TiO2 [J]. Chemistry of Materials, 2008, 20(10): 3435-3442

[17]

LeeD. H., ParkJ. G., ChoiK. J., ChoiH. J., KimD. W.. Preparation of brookite-type TiO2/carbon nanocomposite electrodes for application to Li ion batteries [J]. European Journal of Inorganic Chemistry, 2008, 6: 878-882

[18]

TsaiM. C., ChangJ. C., SheuH. S., ChiuH. T., LeeC. Y.. Lithium ion intercalation performance of porous laminal titanium dioxides synthesized by sol-gel process [J]. Chemistry of Materials, 2009, 21(3): 499-505

[19]

AnL.-p., LiG.-r., HuT., GaoX.-p., ShenP.-wen.. Electrochemical lithium storage of TiO2-B nanotubes before and after supporting of transition metal oxides [J]. Chinese Journal of Inorganic Chemistry, 2008, 24(6): 931-936

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/