Leaching kinetics of acid-soluble Cr(VI) from chromite ore processing residue with hydrofluoric acid

Xiao-bin) Li , Wen-bin Xu , Qiu-sheng Zhou , Zhi-hong Peng , Gui-hua Liu

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (2) : 399 -405.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (2) : 399 -405. DOI: 10.1007/s11771-011-0710-x
Article

Leaching kinetics of acid-soluble Cr(VI) from chromite ore processing residue with hydrofluoric acid

Author information +
History +
PDF

Abstract

Leaching kinetics of acid-soluble Cr(VI) in chromite ore processing residue (COPR) using hydrofluoric (HF) acid solution as a leaching agent was investigated for potential remediation of COPR with industrial waste water containing HF. The results show that HF can effectively destabilize the Cr(VI)-bearing minerals, resulting in the mobilization of Cr(VI) from COPR into the leachate. Particle size significantly influences the leaching of acid-soluble Cr(VI) from COPR, followed by leaching time, whereas the effects of HF concentration and leaching temperature are slight and the influence of stirring rate is negligible. The leaching process of acid-soluble Cr(VI) from COPR is controlled by the diffusion through the product layer. The apparent activation energy is 8.696 kJ/mol and the reaction orders with respect to HF concentration and particle size is 0.493 8 and −2.013 3, respectively.

Keywords

leaching / kinetics / hydrofluoric acid / hexavalent chromium / chromite ore processing residue

Cite this article

Download citation ▾
Xiao-bin) Li, Wen-bin Xu, Qiu-sheng Zhou, Zhi-hong Peng, Gui-hua Liu. Leaching kinetics of acid-soluble Cr(VI) from chromite ore processing residue with hydrofluoric acid. Journal of Central South University, 2011, 18(2): 399-405 DOI:10.1007/s11771-011-0710-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KowalskiZ., Gollinger-TarajkoM.. Environmental evaluation of different variants of the chromium compound production model using chromic waste [J]. Waste Management, 2003, 23(8): 771-783

[2]

DeakinD., WestL. J., StewartD. I., YardleydB. W.. Leaching behavior of a chromium smelter waste heap [J]. Waste Management, 2001, 21(3): 265-270

[3]

JagupillaS. C., MoonD. H., WazneaM., ChristodoulatosC., KimM. G.. Effects of particle size and acid addition on the remediation of chromite ore processing residue using ferrous sulfate [J]. Journal of Hazardous Materials, 2009, 168(1): 121-128

[4]

JiZhu.. Two key points for the treatment of chromium ore processing residue [J]. Inorganic Chemicals Industry, 2004, 36(5): 1-4

[5]

GeelhoedJ. S., MeeussenJ. C. L., HillierS., LumsdonD. G., ThomasR. P., FarmerJ. G., PatersonE.. Identification and geochemical modeling of processes controlling leaching of Cr(VI) and other major elements from chromite ore processing residue [J]. Geochimica et Cosmochimica Acta, 2002, 66(22): 3927-3942

[6]

HillierS., RoeM. J., GeelhoedJ. S., FraserA. R., FarmerJ. G., PatersonE.. Role of quantitative mineralogical analysis in the investigation sites contaminated by chromite ore processing residue [J]. Science of the Total Environment, 2003, 308(1): 195-210

[7]

HillierS., LumsdonD. G., BrydsonR., PatersonE.. Hydrogarnet: A host phase for Cr(VI) in chromite ore processing residue (COPR) and other high pH wastes [J]. Environmental Science and Technology, 2007, 41(6): 1921-1927

[8]

TerryP. A.. Characterization of Cr ion exchange with hydrotalcite [J]. Chemosphere, 2004, 57(7): 541-546

[9]

FarmerJ., PatersonE., BewleyR. J. F., GeelhoedJ. S., HillierS., MeeussenJ. C., LumsdonD. G., ThoamsR. P., GrahamM. C.. The implications of integrated assessment and modeling studies for the future remediation of chromite ore processing residue disposal sites [J]. Science of the Total Environment, 2006, 360(1): 90-97

[10]

TinjumJ. M., BensonC. H., EdilT. B.. Mobilization of Cr(VI) from chromite ore processing residue through acid treatment [J]. Science of the Total Environment, 2008, 391(1): 13-25

[11]

DermatasD., ChrysochoouM., MoonD. H., GrubbD. G., WazneM., ChristodoulatosC.. Ettringite-induced heave in chromite ore processing residue (COPR) upon ferrous sulfate treatment [J]. Environmental Science and Technology, 2006, 40(18): 5786-5792

[12]

MoonD. H., DermatasD., WazneM., SanchezA. M., ChrysochoouM., GrubbD. G.. Swelling related to ettringite crystal formation in chromite ore processing residue [J]. Environmental Geochemistry and Health, 2007, 29(4): 289-294

[13]

MoonD. H., WazneM., DermatasD., ChristodulatosC., SanchezA. M., GrubbD. G., ChrysochoouM., KimM. G.. Long-term treatment issues with chromite ore processing residue (COPR): Cr6+ reduction and heave [J]. Journal of Hazardous Materials, 2007, 143(3): 629-635

[14]

MoonD. H., WazneM., JagupillaS. C., ChristodoulatosC., KimM. G., KoutsospyrosA.. Particle size and pH effects on remediation of chromite ore processing residue using calcium polysulfide (CaS5) [J]. Science of the Total Environment, 2008, 399(1/2/3): 2-10

[15]

WazneM., JagupillaS. C., MoonD. H., ChristodoulatosC., KimM. G.. Assessment of calcium polysulfide for the remediation of hexavalent chromium in chromite ore processing residue (COPR) [J]. Journal of Hazardous Materials, 2007, 143(3): 620-628

[16]

WazneM., MoonD. H., JagupillaS. C., ChristodoulatosC., DermatasD., ChrysochoouM.. Remediation of chromite ore processing residue using ferrous sulfate and calcium polysulfide [J]. Geoscience Journal, 2007, 11(2): 105-110

[17]

HatzifotisM., WilliamsA., MullerM., PeggS.. Hydrofluoric acid burns [J]. Burns, 2004, 30(2): 156-159

[18]

SpölerF., FrentzM., FörstM., KurzH., SchrageN. F.. Analysis of hydrofluoric acid penetration and decontamination of the eye by means of time-resolved optical coherence tomography [J]. Burns, 2008, 34(4): 549-555

[19]

PanJ.-f., FengX.-x., ZhangD.-nian.. Study the forms of chromium of chromite ore processing residue [J]. Shanghai Environmental Science, 1996, 15(3): 15-17

[20]

ChiR.-a., TianJ., GaoH., ZhouF., LiuM., WangC.-wen.. Kinetics of leaching flavonoids from pueraria lobatu with ethanol [J]. Chinese Journal of Chemical Engineering, 2006, 14(3): 402-406

[21]

FengQ.-m., ShaoY.-h., OuL.-m., ZhangG.-f., LuY.-ping.. Kinetics of nickel leaching from roasting-dissolving residue of spent catalyst with sulfuric acid [J]. Journal of Central South University, 2009, 16(3): 410-415

[22]

SunH.-l., YuH.-y., WangB., MiaoY., TuG.-f., BiS.-wen.. Leaching dynamics of 12CaO·7Al2O3 [J]. The Chinese Journal of Nonferrous Metals, 2008, 18(10): 1920-1925

[23]

LiH.-r., FengY.-l., LuoX.-b., WangH.-j., DuZ.-wei.. Leaching kinetics of extraction of vanadium pentoxide from clay mineral [J]. Journal of Central South University: Science and Technology, 2008, 39(6): 1181-1184

[24]

Abdel-AalE. A.. Kinetics of sulfuric acid leaching of low grade zinc silicate ore [J]. Hydrometallurgy, 2000, 55(3): 247-254

[25]

LozanoL. J., JuanD.. Leaching of vanadium from spent sulfuric acid catalysts [J]. Minerals Engineering, 2001, 14(5): 543-546

[26]

FanX.-x., PengJ.-h., HuangM.-y., ZhangS.-m., ZhangL.-b., GuoS.-h., YangK.-bin.. Study on kinetics of oxidative leaching of chalcopyrite in the presence of silver ion [J]. Precious Metals, 2005, 26(3): 15-20

[27]

MohammadS. S., DavoodM., MehdiO. I.. Kinetics of sulfuric acid leaching of cadmium from Cd-Ni zinc plant residues [J]. Journal of Hazardous Materials, 2009, 163(2): 880-890

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/