Ecology detection of moderate thermophilic enrichment at Lau Basin hydrothermal vents

Hong-bo Zhou , Hou-guo Ji , Man-man Wei , Yu-guang Wang , Xin-hua Chen

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (2) : 392 -398.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (2) : 392 -398. DOI: 10.1007/s11771-011-0709-3
Article

Ecology detection of moderate thermophilic enrichment at Lau Basin hydrothermal vents

Author information +
History +
PDF

Abstract

Culturable thermophilic microorganisms were enriched from samples collected from Lau Basin hydrothermal vents in artificial seawater medium at 45 °C and pH 7.0. Microbial diversities of the enriched communities were defined by performing a restriction fragment length polymorphism (RFLP) analysis of 16S rRNA gene sequences with enzymes MspI and Hin6 I. A total of 14 phylotypes have been detected by the RFLP patterns identified for 16S rRNA clone libraries of the enrichment. Analysis of sequences showed that at least four bacterial divisions presented in the clones libraries. The phyla Proteobacteria and Firmicutes were the most dominant groups. The majority of the sequences included in this analysis affiliated with Gamma Proteobacteria (71%) and Bacillus (23%). Scanning electron micrographs revealed that there were abundant rod and coccoidal forms encased in sulphur and sodium chloride precipitate. These results revealed that there were a diversity of moderate thermophilic bacterial populations thrived in Lau Basin hydrothermal vents that were previously not detected by either molecular retrieval or strain purification techniques.

Keywords

hydrothermal vents / phylogenetic analysis / enrichment culture / RCR-RFLP / microbial diversity / sediments

Cite this article

Download citation ▾
Hong-bo Zhou, Hou-guo Ji, Man-man Wei, Yu-guang Wang, Xin-hua Chen. Ecology detection of moderate thermophilic enrichment at Lau Basin hydrothermal vents. Journal of Central South University, 2011, 18(2): 392-398 DOI:10.1007/s11771-011-0709-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

CorlissJ. B., DymondJ., GordonL. I., EdmondJ. M., Von HerzenR. P., BallardR. D., GreenK., WilliamsD., BainbridgeA., CraneK., Van AndelT. H.. Submarine thermal springs on the Galapagos Rift [J]. Science, 1979, 203: 1073-1083

[2]

SoginM. L., MorrisonH. G., HuberJ. A., WelchD. M., HuseS. M., NealP. R., ArrietaJ. M., HerndlG. J.. Microbial diversity in the deep sea and the underexplored “rare biosphere” [J]. PNAS, 2006, 103(32): 12115-12120

[3]

EhrhardtC. J., HaymonR. M., LamontagneM. G., HoldenP. A.. Evidence for hydrothermal archaea within the basaltic flanks of the East Pacific Rise [J]. Environmental Microbiology, 2007, 9(4): 900-912

[4]

PengX.-t., ZhouH.-y., LiJ.-t., LiJ.-w., ChenS., YaoH.-q., WuZ.-jun.. Intracellular and extracellular mineralization of a microbial community in the Edmond deep-sea vent field environment [J]. Sedimentary Geology, 2010, 229(4): 193-206

[5]

SchmidtC., VuilleminR., le GallC., GaillF., Le BiesN.. Geochemical energy sources for microbial primary production in the environment of hydrothermal vent shrimps [J]. Marine Chemistry, 2008, 108(1/2): 18-31

[6]

BatesA. E., LeeR. W., TunnicliffeV., LamareM. D.. Deep-sea hydrothermal vent animals seek cool fluids in a highly variable thermal environment [J]. Nature Communications, 2010, 1(2): 1-6

[7]

SuzukiY., KojimaS., SasakiT., SuzukiM., UtsumiT., WatanabeH., UrakawaH., TsuchiidaS., NunouraT., HirayamaH., TakaiK., KennethH. N., HorikoshiK.. Host-symbiont relationships in hydrothermal vent Gastropods of the genus Alviniconcha from the southwest pacific [J]. Applied and Environmental Microbiology, 2006, 72(2): 1388-1393

[8]

BrandG. L., HorakR. V., Le BirsN., GoffrediS. K., CarneyS. L., GovenarB., YanceyP. H.. Hypotaurine and thiotaurine as indicators of sulfide exposure in bivalves and vestimentiferans from hydrothermal vents and cold seeps [J]. Marine Ecology, 2007, 28(1): 208-218

[9]

MiroshnichenkoM. L.. Thermophilic microbial communities of deep-sea hydrothermal vents [J]. Microbiology, 2004, 73: 1-13

[10]

SmithJ. L., CampbellB. J., HansonT. E., ZhangC. L., CaryC. S.. Nautilia profundicola sp. nov., a thermophilic, sulfur-reducing epsilonproteobacterium from deep-sea hydrothermal vents [J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58: 1598-1602

[11]

EdgcombV. P., MolyneauxS. J., BoerS., WirsenC. O., SaitoM., AtkinsM. S., LloydK., TeskeA.. Survival and growth of two heterotrophic hydrothermal vent archaea, Pyrococcus strain GB-D and Thermococcus fumicolans, under low pH and high sulfide concentrations in combination with high temperature and pressure regimes [J]. Extremophiles, 2007, 11(2): 329-342

[12]

AlainK., PostecA., GrinsardE., LesongeurF., PrieurD., GodfroyA.. Thermodesulfatator atlanticus sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent [J]. International Journal of Systematic and Evolutionary Microbiology, 2010, 60: 33-38

[13]

WardD. M., BatesonM. M., WellerR., Ruff-robertsA. L.. Ribosomal RNA analysis of microorganisms as they occur in nature [J]. Advances in Microbial Ecology, 1992, 12: 219-286

[14]

EdwardsK. J., BachW., MccollomT. M., RogersD. R.. Neutrophilic iron-oxidizing bacteria in the ocean: their habitats, diversity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea [J]. Geomicrobiology Journal, 2004, 21: 393-404

[15]

MichaelP., SeewaldJ.. Focus on: Studies at the Lau Basin [J]. Ridge2000 Events, 2007, 2(1): 11-21

[16]

BurgaudG., Le CalvezT., ArzurD., VandenkoornhuyseP., BarbierG.. Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents [J]. Environmental Microbiology, 2009, 11(6): 1588-1600

[17]

AkoY., TakaiK., IshidaY., AritsuneS. T., KatayamaY.. Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria [J]. International Journal of Systematic Bacteriology, 1996, 46: 1099-1104

[18]

ZhouJ. Z., BrunsM. A., TiedjeJ. M.. DNA recovery from soils of diverse composition [J]. Applied and Environmental Microbiology, 1995, 63: 3789-3796

[19]

GoodfellowM., StackerbrandtE.Nucleic acid techniques in bacterial systematics [M], 1991, New York, Wiley & Sons: 115-175

[20]

SaitouN., NeiM.. The neighbor-joining method: A new method for reconstructing phylogenetic trees [J]. Molecular Biology and Evolution, 1987, 4: 406-425

[21]

De PeerV. Y., De WachterR.. TREECON for Windows: A software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment [J]. Computer Applications in the Biosciences, 1994, 10: 569-570

[22]

MoyerC. L., DobbsF. C., KarlD. M.. Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii [J]. Applied and Environmental Microbiology, 1994, 60: 871-879

AI Summary AI Mindmap
PDF

91

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/