Effect of L-cysteine on bioleaching of Ni-Cu sulphide by A. manzaensis

Zhi-guo He , Jian-cun Zhao , Wan-jie Liang , Yue-hua Hu , Guan-zhou Qiu

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (2) : 381 -385.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (2) : 381 -385. DOI: 10.1007/s11771-011-0707-5
Article

Effect of L-cysteine on bioleaching of Ni-Cu sulphide by A. manzaensis

Author information +
History +
PDF

Abstract

The effect of L-cysteine in different concentrations on the bioleaching of Ni-Cu sulfide was studied with an extremely thermophilic archaea, Acidianus manzaensis. It is found that adding certain amounts of L-cysteine to the bioleaching system of Ni-Cu sulfide largely enhances the leaching rate. X-ray diffraction (XRD) patterns show the change of bioleached solid residues and the effect of L-cysteine on the surface charges of minerals. Zeta potential and IR spectra of mineral surface show that the interaction between L-cysteine and mineral leads to the formation of metal complex, which is propitious to the bioleaching of Ni-Cu sulfide by Acidianus manzaensis.

Keywords

Acidianus manzaensis / L-cysteine / Ni-Cu sulfide / bioleaching / surface charge / Zeta potential

Cite this article

Download citation ▾
Zhi-guo He, Jian-cun Zhao, Wan-jie Liang, Yue-hua Hu, Guan-zhou Qiu. Effect of L-cysteine on bioleaching of Ni-Cu sulphide by A. manzaensis. Journal of Central South University, 2011, 18(2): 381-385 DOI:10.1007/s11771-011-0707-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

FuJ.-h., QiuG.-z., LiuJ.-s., HuY.-h., ZhangZ.-hai.. Study on bacterial leaching of oxide-sulphide copper ores [J]. Mining and Metallurgical Engineering, 2003, 23(4): 30-34

[2]

HeZ.-g., GaoF.-l., ZhongH., HuY.-hua.. Effects of L-cysteine on Ni-Cu sulfide and marmatite bioleaching by Acidithiobacillus caldus [J]. Bioresource Technology, 2009, 100(3): 1383-1387

[3]

HuY.-h., HeZ.-g., HuW.-x., PengH., ZhongHui.. Effect of two kinds of amino-acids on bioleaching metal sulfide [J]. Transactions of Nonferrous Metals Society of China, 2004, 14(4): 794-797

[4]

LiH.-m., KeJ.-jun.. The progress in bioleaching of nickel-bearing sulfide ores [J]. Multipurpose Utilization of Mineral Resources, 1999, 5(3): 28-33

[5]

LiuJ.-s., WangZ.-h., LiB.-m., ZhangY.-hua.. Interaction between pyrite and cysteine [J]. Transactions of Nonferrous Metals Society of China, 2006, 16(4): 943-946

[6]

LIU Jing-ping, LI Jin, GE Xing. Synthesis and free radical inhibition rate of copper(II), iron(II), manganese(II) complexes with cysteine [J]. Chemical World, 2004(5): 235–238. (in Chinese)

[7]

LiuZ., YangW.-b., BaiG., TianW., JinY.-jie.. Microbial enzyme conversion of L-cysteine and L-cystine [J]. Microbiology, 2003, 30(6): 16-21

[8]

MinX.-b., ChaiL.-y., ChenW.-l., ZhangC.-f., HuangB.-y., KuangZhong.. Study on bioleaching of refractory gold ore (I)—Mechanism on bioleaching of pyrite by Thiobacillus ferroxidans [J]. Transactions of Nonferrous Metals Society of China, 2001, 11(5): 784-789

[9]

YoshidaN., NakasatoM., OhmuraN., AndoA., SaikiH., IshiiM., IgarashiY.. Acidianus manzaensis sp. nov., a novel thermoacidophilic archaeon growing autotrophically by the oxidation of H2 with the reduction of Fe3+ [J]. Current Microbiology, 2006, 53(5): 406-411

[10]

ParkerA., KlauberC., KougianosA., WatlingH. R., Van BronswijkW.. An X-ray photoelectron spectroscopy study of the mechanism of oxidative dissolution of chalcopyrite [J]. Hydrometallurgy, 2003, 71(1/2): 265-276

[11]

QiuG.-z., LiQ., QinW.-qing.. Bacterial leaching complex sulfide minerals of lead, antimony, zinc and iron [J]. Mining and Metallurgical Engineering, 2005, 25(3): 30-33

[12]

QiuG.-z., LiuJ.-s., HuY.-hua.. Electrochemical behavior of chalcopyrite in presence of Thiobacillus ferroxidans [J]. Transactions of Nonferrous Metals Society of China, 2000, 10(S1): 23-25

[13]

Rojas-ChapanaJ. A., BartelsC. C., PohlmannI., TributschH.. Co-operative leaching and chemotaxis of thiobacilli studied with spherical sulphumulphide substrates [J]. Process Biochem, 1998, 33(3): 239-248

[14]

Rojas-ChapanaJ. A., GiersigM., TributschH.. The path of sulphur during the bio-oxidation of pyrite by Thiobacillus ferrooxidans [J]. Fuel, 1996, 75(8): 923-930

[15]

Rojas-ChapanaJ. A., TributschH.. Biochemistry of sulfur extraction in bio-corrosion of pyrite by Thiobacillus ferrooxidans [J]. Hydrometallurgy, 2001, 59(2/3): 291-300

[16]

Rojas-ChapanaJ. A., TributschH.. Bio-leaching of pyrite accelerated by cysteine [J]. Process Biochemistry, 2000, 35(8): 815-824

[17]

SanoY., TakedaS.. Cytotoxicity and dissolution of metallic biomaterials using dynamic extraction (in vitro) [J]. Shika Igaku, 1992, 55(2): 125-140

[18]

SuzukiI.. Microbial leaching of metals from sulphide minerals [J]. Biotechnology Advances, 2001, 19(2): 119-132

[19]

TributschH., BennetJ. C.. Semiconductor-electrochemical aspects of bacterial leaching: I. Oxidation of metal sulphides with large energy gaps [J]. J Chem Techno1 Biotechnol, 1981, 31(1): 565-511

[20]

TributschH., Rojas-ChapanaJ. A.. Metal sulfide semiconductor with the reduction of Fe3+ [J]. Current Microbiology, 2006, 53(3): 406-411

[21]

YueSong.. Preparations and structure characterization of the crystals of ferrous cysteine [J]. Chemical Research and Application, 2000, 12(4): 387-390

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/