CC-CV charge protocol based on spherical diffusion model

Lian-xing Li , Xin-cun Tang , Yi Qu , Hong-tao Liu

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (2) : 319 -322.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (2) : 319 -322. DOI: 10.1007/s11771-011-0698-2
Article

CC-CV charge protocol based on spherical diffusion model

Author information +
History +
PDF

Abstract

A new insight into the constant current-constant voltage (CC-CV) charge protocol based on the spherical diffusion model was presented. From the model, the CV-charge process compensates, to a large extent, the capacity loss in the CC process, and the capacity loss increases with increasing the charging rate and decreases with increasing the lithium-ion diffusion coefficient and using a smaller τ value (smaller particle-size and larger diffusion coefficient) and a lower charge rate will be helpful to decreasing the capacity loss. The results show that the CC and the CV charging processes, in some way, are complementary and the capacity loss during the CC charging process due to the large electrochemical polarization can be effectively compensated from the CV charging process.

Keywords

lithium-ion battery / charge protocol / constant current-constant voltage mode / capacity loss

Cite this article

Download citation ▾
Lian-xing Li, Xin-cun Tang, Yi Qu, Hong-tao Liu. CC-CV charge protocol based on spherical diffusion model. Journal of Central South University, 2011, 18(2): 319-322 DOI:10.1007/s11771-011-0698-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AbeT., SaganeF., OhtsukaM., IriyamaY., OgumiZ.. Lithium-ion transfer at the interface between lithium-ion conductive ceramic electrolyte and liquid electrolyte—A key to enhancing the rate capability of lithium-ion batteries [J]. J Electrochem Soc, 2005, 152(11): A2151-A2154

[2]

AroraP., WhiteR. E., DoyleM.. Capacity fade mechanisms and side reactions in lithium-ion batteries [J]. J Electrochem Soc, 1998, 14510: 3647-3667

[3]

RamadassP., DurairajanA., HaranB., WhiteR. E., PopovB. N.. Studies on capacity fade of spinel-based Li-ion batteries [J]. J Electrochem Soc, 2002, 1491: A54-A60

[4]

AurbachD., MarkovskyB., WeissmanI., LeviE., Ein-eliY.. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries [J]. Electrochim Acta, 1999, 45(1/2): 67-86

[5]

DoyleM., NewmanJ., GozdzA. S., SchmutzC. N., TaracsonJ. M.. Comparison of modeling predictions with experimental data from plastic lithium ion cells [J]. J Electrochem Soc, 1996, 1436: 1890-1903

[6]

BroussleyM., BiensanP., SimonB.. Lithium insertion into host materials: The key to success for Li ion batteries [J]. Electrochim Acta, 1999, 451/2: 3-22

[7]

NottenP. H. L., Op HetveldJ. H. G., Van BeekJ. R. G.. Boostcharging Li-ion batteries: A challenging new charging concept [J]. J Power Sources, 2005, 145(1): 89-94

[8]

LIN P C, LIU Y H, LIU YH, CHEN J K, CHEN C H. A fully digital rapid charger for electric scooters [J]. Proceedings of 18th Symposium on Electrical Vehicles, Session D7A, 2001: 1–13.

[9]

LiuY. H., TengJ. H., LinY. C.. Search for an optimal rapid charging pattern for lithium-ion batteries using ant colony system algorithm [J]. IEEE Trans Ind Electron, 2005, 525: 1328-1336

[10]

ChungS. K., AndriikoA. A., Mon’koA. P., LeeS. H.. On charge conditions for Li-ion and other secondary lithium batteries with solid intercalation electrodes [J]. J Power Sources, 1999, 79(2): 205-211

[11]

SikhaG., RamadassP., HaranB. S., WhiteR. E., PopovB. N.. Comparison of the capacity fade of Sony US 18650 cells charged with different protocols [J]. J Power Sources, 2003, 1221: 67-76

[12]

LiJ., MurphyE., WinnickJ., KohlP. A.. The effects of pulse charging on cycling characteristics of commercial lithium-ion batteries [J]. J Power Sources, 2001, 1021/2: 302-309

[13]

TangX. C., PanC. Y., HeL. P., LiL. Q., ChenZ. Z.. A novel technique based on the ratio of potentio-charge capacity to galvanocharge capacity (RPG) for determination of the diffusion coefficient of intercalary species within insertion-host materials: Theories and experiments [J]. Electrochimica Acta, 2004, 4919: 3113-3119

[14]

VerbruggeM. W., KochB. J.. Electrochemistry of intercalation materials: Charge-transfer reaction and intercalate diffusion in porous electrodes [J]. J Electrochem Soc, 1999, 146(3): 833-839

[15]

TangZ. Y., XueJ. J., LiJ. G., WangZ. L.. Discharge process of insertion electrodes controlled by lithium ion diffusion in solid materials [J]. Acta Phys-Chim Sin, 2001, 17(6): 526-530

[16]

JinL., TangX. C., PanC. Y., JiangC. K.. Variation of solid diffusion coefficient for lithium ions in LiCoO2 with charge- discharge cycles [J]. Chin J Inorg Chem, 2007, 237: 1238-1241

[17]

ZhangS. S., XuK., JowT. R.. Study of the charging process of a LiCoO2-based Li-ion battery [J]. J Power Sources, 2006, 160(2): 1349-1354

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/