Hot deformation behavior of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy with acicular microstructure

Gao-feng Liu , Shang-zhou Zhang , Li-qing Chen

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (2) : 296 -302.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (2) : 296 -302. DOI: 10.1007/s11771-011-0694-6
Article

Hot deformation behavior of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy with acicular microstructure

Author information +
History +
PDF

Abstract

The characteristics of hot deformation of an α+β titanium alloy Ti-6.5Al-3.5Mo-1.5Zr-0.3Si with acicular microstructure were studied using isothermal hot compressive tests in a strain rate range of 0.01–10 s−1 at 860–1 100 °C. The true stress-true strain curves of alloy hot-compressed in the α+β region exhibit a peak stress followed by continuous flow softening; whereas in the β region, the flow stress attains a steady-state regime. At a strain rate of 10 s−1 and in a wide temperature range, the alloy exhibits plastic flow instability. According to the kinetic rate equation, the apparent activation energies are estimated to be about 633 kJ/mol in the α+β region and 281 kJ/mol in the β region, respectively. The processing maps show a domain of the globularization process of α colony structure and α dynamic recrystallization in the temperature range of 860–960 °C with a peak efficiency of about 60%, and a domain of β dynamic recrystallization in the β region with a peak efficiency of 80%.

Keywords

titanium alloy / Ti-6.5Al-3.5Mo-1.5Zr-0.3Si / hot compression / flow behavior / microstructure

Cite this article

Download citation ▾
Gao-feng Liu, Shang-zhou Zhang, Li-qing Chen. Hot deformation behavior of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy with acicular microstructure. Journal of Central South University, 2011, 18(2): 296-302 DOI:10.1007/s11771-011-0694-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

FilipR., KubiakK., ZiajaW., SieniawskiJ.. The effect of microstructure on the mechanical properties of two-phase titanium alloys [J]. J Mater Proc Technol, 2003, 133: 84-89

[2]

JacksonM., DringK.. Materials perspective: A review of advances in processing and metallurgy of titanium alloys [J]. Mater Sci Technol, 2006, 22: 881-887

[3]

ChunY. B., HwangS. K.. Static recrystallization of warm-rolled pure Ti influenced by microstructural inhomogeneity [J]. Acta Mater, 2008, 56: 369-379

[4]

DingR., GuoZ. X., WilsonA.. Microstructural evolution of a Ti-6Al-4V alloy during thermomechanical processing [J]. Mater Sci Eng A, 2002, 327: 233-245

[5]

MartinP. L.. Effects of hot working on the microstructure of Ti-base alloys [J]. Mater Sci Eng A, 1998, 243: 25-31

[6]

WeissI., FroesF. H., EylonD., WelschG. E.. Modification of alpha morphology in Ti-6Al-4V by thermomechanical processing [J]. Metall Trans A, 1986, 17: 1935-1947

[7]

SemiatinS. L., SeetharamanV., WeissI.. Flow behavior and globularization kinetics during hot working of Ti-6Al-4V with a colony alpha microstructure [J]. Mater Sci Eng A, 1999, 263: 257-271

[8]

SavageM. F., TatalovichJ., ZupanM.. Deformation mechanisms and microtensile behavior of single colony Ti-6242Si [J]. Mater Sci Eng A, 2001, 319/320/321: 398-403

[9]

LiM. Q., LiuX. M., XiongA. M.. Prediction of the mechanical properties of forged TC11 titanium alloy by ANN [J]. J Mater Process Technol, 2002, 121: 1-4

[10]

LiA. B., HuangL. J., MengQ. Y.. Hot working of Ti-6Al-3Mo-2Zr-0.3Si alloy with lamellar α+β starting structure using processing map [J]. Materials and Design, 2009, 30: 1625-1631

[11]

PoorganjiB., YamaguchiM., ItsumiY., MatsumotoK.. Microstructure evolution during deformation of a near-α titanium alloy with different initial structures in the two-phase region [J]. Scripta Mater, 2009, 61: 419-422

[12]

WanjaraP., JahaziM., MonajatiH., YueS.. Influence of thermomechanical processing on microstructural evolution in near-α alloy IMI834 [J]. Mater Sci Eng A, 2006, 416: 300-311

[13]

WeissI., SemiatinS. L.. Thermomechanical processing of alpha titanium alloys—An overview [J]. Mater Sci Eng A, 1999, 263: 243-256

[14]

SheppardT., NorleyJ.. Deformation characteristics of Ti-6Al-4V [J]. Mater Sci Technol, 1988, 4: 903-908

[15]

LouL. X., YangY., PengL. B.. Flow stress behavior and deformation characteristics of Ti-3Al-5V-5Mo compressed at elevated temperatures [J]. Mater Design, 2002, 23: 451-457

[16]

BriottetL., JonasJ. J., MontheilletF.. A mechanical interpretation of the activation energy of high temperature deformation in two phase materials [J]. Acta Mater, 1996, 44: 1665-1672

[17]

BrownA. M., AshbyM. F.. Correlations for diffusion coefficients [J]. Acta Metall, 1980, 28: 1085-1101

[18]

Walcoe De RecaN. E., LibanateC. M.. Self-diffusion in β titanium and β-hafnium [J]. Acta Metall, 1968, 16: 1297-1305

[19]

WeissI., SemiatinS. L.. Thermomechanical processing of beta titanium alloys—An overview [J]. Mater Sci Eng A, 1998, 243: 46-65

[20]

SemiatinS. L., MontheilletF., ShenG.. Self-consistent modeling of the flow behavior of wrought alpha/beta titanium alloys under isothermal and nonisothermal hot-working conditions [J]. Metall Mater Trans A, 2002, 33: 2719-2727

[21]

MythiliR., SarojaS., VijayalakshmiM.. Study of mechanical behavior and deformation mechanism in an α-β Ti-4.4Ta-1.9Nb alloy [J]. Mater Sci Eng A, 2007, 454/455: 43-51

[22]

OhS. I., SemiatinS. L., JonasJ. J.. An analysis of the isothermal hot compression test [J]. Metall Trans A, 1992, 23: 963-975

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/