A new multifunctional polymer: Synthesis and characterization of mPEG-b-PAA-grafted chitosan copolymer

Cheng-bin Liu , Xiao-jian Wang , Rong-hua Liu , Yu-lin Wu , Sheng-lian Luo

Journal of Central South University ›› 2010, Vol. 17 ›› Issue (5) : 936 -942.

PDF
Journal of Central South University ›› 2010, Vol. 17 ›› Issue (5) : 936 -942. DOI: 10.1007/s11771-010-0580-7
Article

A new multifunctional polymer: Synthesis and characterization of mPEG-b-PAA-grafted chitosan copolymer

Author information +
History +
PDF

Abstract

A new multifunctional mPEG-b-PAA-grafted chitosan copolymer possessing amino and carboxyl groups, mPEG-b-PAA-g-CHI (compound 6), was designed for a potential application in gene/drug delivery and synthesized by the methods of reversible addition-fragmentation chain transfer (RAFT) polymerization of acrylic acid (AA) and grafting reaction of a biodegradable chitosan (CHI) derivative. Completion of the reactions and characterization of the resulting compounds were demonstrated by 1H NMR, FTIR and gel permeation chtomatography (GPC) studies. The results show that the molar ratio of amino groups to carboxyl groups in the copolymer (compound 6) is 0.41:0.59.

Keywords

chitosan / polyacrylic acid (PAA) / polyethylene glycol (PEG) / multifunction polymer / synthesis / characterization

Cite this article

Download citation ▾
Cheng-bin Liu, Xiao-jian Wang, Rong-hua Liu, Yu-lin Wu, Sheng-lian Luo. A new multifunctional polymer: Synthesis and characterization of mPEG-b-PAA-grafted chitosan copolymer. Journal of Central South University, 2010, 17(5): 936-942 DOI:10.1007/s11771-010-0580-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HawkerC. J., BosmanA. W., HarthE.. New polymer synthesis by nitroxide mediated living radical polymerizations [J]. Chemical Reviews, 2001, 101: 3661-3688

[2]

MatyjaszewskiK., XiaJ.. Atom transfer radical polymerization [J]. Chemical Reviews, 2001, 101: 2921-2990

[3]

BoyerC., BulmusV., DavisT. P., LadmiralV., LiuJ., PerrierS.. Bioapplications of RAFT polymerization [J]. Chemical Reviews, 2009, 109: 5402-5436

[4]

LoweA. B., MccormickC. L.. Reversible addition-fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media [J]. Progress in Polymer Science, 2007, 32: 283-351

[5]

YorkA. W., KirklandS. E., MccormickC. L.. Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization: Stimuli-responsive drug and gene delivery [J]. Advanced Drug Delivery Review, 2008, 60: 1018-1036

[6]

BaeJ. W., LeeE., ParkK. M., ParkK. D.. Vinyl sulfone-terminated PEG-PLLA diblock copolymer for thiol-reactive polymeric micelle [J]. Macromolecules, 2009, 42: 3437-3442

[7]

WorkmanH., FlynnP. F.. Stabilization of RNA oligomers through reverse micelle encapsulation [J]. Journal of the American Chemical Society, 2009, 131: 3806-3807

[8]

YiX., BatrakovaE., BanksW. A., VinogradovS., KabanovA. V.. Protein conjugation with amphiphilic block copolymers for enhanced cellular delivery [J]. Bioconjugate Chemistry, 2008, 19: 1071-1077

[9]

BaeY., NishiyamaN., KataokaK.. In vivo antitumor activity of the folate-conjugated pH-sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments [J]. Bioconjugate Chemistry, 2007, 18: 1131-1139

[10]

FukushimaS., MiyataK., NishiyamaN., KanayamaN., YamasakiY., KataokaK.. PEGylated polyplex micelles from triblock catiomers with spatially ordered layering of condensed pDNA and buffering units for enhanced intracellular gene delivery [J]. Journal of the American Chemical Society, 2005, 127: 2810-2811

[11]

PeracchiaM. T., VauthierC., PassiraniC., CouvreurP., LabarreD.. Complement consumption by poly(ethylene glycol) in different conformations chemically coupled to poly(isobutyl 2-cyanoacrylate) nanoparticles [J]. Life Sciences, 1997, 61: 749-761

[12]

LiY., LokitzB. S., MccormickC. L.. RAFT synthesis of a thermally responsive ABC triblock copolymer incorporating N-acryloxysuccinimide for facile in situ formation of shell cross-linked micelles in aqueous media [J]. Macromolecules, 2006, 39: 81-89

[13]

GodbeyW. T., WuK. K., MikosA. G.. Tracking the intracellu-lar path of poly(ethylenimine) /DNA complexes for gene delivery [J]. Proceedings of the National Academy Science USA, 1999, 96: 5177-5181

[14]

ParkT. G., JeongJ. H., KimS. W.. Current status of polymeric gene delivery systems [J]. Advanced Drug Delivery Review, 2006, 58: 467-486

[15]

KakizawaY., KataokaK.. Block copolymer micelles for delivery of gene and related compounds [J]. Advanced Drug Delivery Review, 2002, 54: 203-222

[16]

WuY.-d., LiuC.-b., ZhaoX.-y., XiangJ.-nan.. A new biodegradable polymer: PEGylated chitosan-g-PEI possessing a hydroxyl group at the PEG end [J]. Journal of Polymer Research, 2008, 15: 181-185

[17]

FarmerS. C., PattenT. E.. (Thiocarbonyl-α-thio)carboxylic acid derivatives as transfer agents in reversible addition-fragmentation chain-transfer polymerizations [J]. Journal of Polymer Science (Part A): Polymer Chemistry, 2002, 40: 555-563

[18]

MuzzarelliR. A. A.. N-(carboxymethylidene)chitosans and N-(carboxymethyl)chitosans: Novel chelating polyampholytes obtained from chitosan glyoxylate [J]. Carbohydrate Research, 1982, 107: 199-214

[19]

ThomasM., KlibanovA. M.. Enhancing polyethylenimine’s delivery of plasmid DNA into mammalian cells [J]. Proceedings of the National Academy Science USA, 2002, 99: 14640-14645

[20]

ThomasM., LuJ. J., GeQ., ZhangC., ChenJ., KlibanovA. M.. Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung [J]. Proceedings of the National Academy Science USA, 2005, 102: 5679-5684

[21]

PunS. H., BellocqN. C., LiuA., JensenG., MachemerT., QuijanoE., SchluepT., WenS., EnglerH., HeidelJ., DavisM. E.. Cyclodextrin-modified polyethylenimine polymers for gene delivery [J]. Bioconjugate Chemistry, 2004, 15: 831-840

[22]

Koping-HoggardM., TubulekasI., GuanH., EdwardsK., NilssonM., VarumK. M., ArturssonP.. Chitosan as a nonviral gene delivery system: Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo [J]. Gene Therapy, 2001, 8: 1108-1121

[23]

LeeM., NahJ. W., KwonY., KohJ. J., KoK. S., KimS. W.. Water-soluble and low molecular weight chitosan-based plasmid DNA delivery [J]. Pharmaceutical Research, 2001, 18: 427-431

[24]

TuX., SuB.-s., LiX.-n., ZhuJ.-rong.. Characteristics of extracellular fluorescent substances of aerobic granular sludge in pilot-scale sequencing batch reactor [J]. Journal of Central South University of Technology, 2010, 17(3): 522-528

[25]

ZhangR., TangM., BowyerA., EisenthalR., HubbleJ.. A novel pH- and ionic-strength-sensitive carboxy methyl dextran hydrogel [J]. Biomaterials, 2005, 26: 4677-4683

[26]

WangY., GaoS., YeW. H., YoonH. S., YangY. Y.. Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer [J]. Nature Materials, 2006, 5: 791-796

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/