Numerical simulation of cyclic behavior of double sand lenses and corresponding liquefaction-induced soil settlement

Y. Pashang Pisheh , S. M. Mir Mohammad Hosseini

Journal of Central South University ›› 2010, Vol. 17 ›› Issue (3) : 593 -602.

PDF
Journal of Central South University ›› 2010, Vol. 17 ›› Issue (3) : 593 -602. DOI: 10.1007/s11771-010-0528-y
Article

Numerical simulation of cyclic behavior of double sand lenses and corresponding liquefaction-induced soil settlement

Author information +
History +
PDF

Abstract

A two-dimensional numerical model was used to explain the liquefaction mechanism of double sand lenses and the corresponding soil deformation due to the cyclic loading. Moreover, in order to investigate the influences of the soil characteristics and input loading data a parametric study was carried out on the essential parameters affecting the soil settlement, and so the variation of these parameters with the corresponding displacements was mainly examined. At last, the results obtained from the numerical analyses of double sand lenses and a continuous sand layer with similar characteristics were compared with those of an estimating method proposed by ISHIHARA and YOSHIMINE. The comparisons show that the settlements due to liquefaction of the continuous sand layer in both numerical and the estimating method are in a good agreement with and are obviously greater than those of double sand lenses.

Keywords

liquefaction / ground failure / cyclic loading / double sand lenses / deformation

Cite this article

Download citation ▾
Y. Pashang Pisheh, S. M. Mir Mohammad Hosseini. Numerical simulation of cyclic behavior of double sand lenses and corresponding liquefaction-induced soil settlement. Journal of Central South University, 2010, 17(3): 593-602 DOI:10.1007/s11771-010-0528-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SeedH. B.. Landslides during earthquakes due to soil liquefaction [J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1968, 94(5): 1055-1122

[2]

PlafkerG.Tectonics of the March 27, 1964 Alaska earthquake [R], 1969, Reston, Virginia, U.S. Geological Survey Professional Report: I1-I74

[3]

MillerR. D., DobrovolnyE.Surficial geology of anchorage and vicinity, Alaska [R]. Reston, 1959, Virginia, U.S. Geological Survey Bulletin: 16-26

[4]

SeedH. B., WilsonS. D.. The Turnagain Heights landslide, Anchorage, Alaska [J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1967, 93: 325-353

[5]

HansenW. R.Effects of the earthquake of March 27, 1964, at Anchorage, Alaska [R], 1965, Reston, Virginia, U.S. Geological Survey Professional Report 542-A: A1-A68

[6]

ShokriM.Investigation of liquefaction potential in sand lenses [D], 1996, Tehran, Amirkabir University of Technology

[7]

MIR MOHAMMAD HOSSEINI S M, NATEGHI F. The crack development due to liquefaction of sand lenses during earthquake loading [C]// Proceeding of the Fourth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. San Diego, California, 2001: 407–413.

[8]

Pashang PishehY.Mechanism of soil deformation due to double lenses liquefaction and critical depth determination [D], 2004, Tehran, Amirkabir University of Technology

[9]

CUNDALL P. Fast Lagrangian analysis of continua manual [EB/OL]. [2001-07-06]. http://www.itascacg.com/pdf/pub/cundall-pub.pdf.

[10]

CUNDALL P. Explicit finite difference methods in geomechanics, in numerical methods in engineering [C]// Proceedings of the EF Conference on Numerical Methods in Geomechanics. Blacksburg, Virginia, 1976: 132–150.

[11]

SeedH. B., IdrissI. M.Soil moduli and damping factors for dynamic response analyses [R], 1970, Berkeley, Report EERC70-10, Earthquake Engineering Research Center, University of California

[12]

[12] FLACFast Lagrangian analysis of continua. Version 4 [M], 2002, Minneapolis, ITASCA Consulting Group Inc

[13]

MartinG. R., FinnW. D. L., SeedH. B.. Fundamentals of liquefaction under cyclic loading [J]. Journal of the Geotechnical Engineering, ASCE, 1975, 101(5): 423-438

[14]

BYRNE P. A cyclic shear-volume coupling and pore-pressure model for sand [C]// Proceedings of the second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. St. Louis, Missouri, 1991: 47–55.

[15]

FinnW. D. L., LeeK. W., MartinG. R.. An effective stress model for liquefaction [J]. Journal of the Geotechnical Engineering Division, ASCE, 1977, 103(GT6): 517-533

[16]

KudellaM., OumeraciH.Liquefaction around marine structures (LIMAS)-large scale experiments on a Caisson Breakwater [R], 2004, Brauncschweig, Technical University Braunschweig

[17]

IshiharaK., YoshimineM.. Evaluation of settlements in sand deposits following liquefaction during earthquakes [J]. Soil and Foundations, 1992, 32(1): 173-188

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/