Adaptive output feedback control for uncertain nonholonomic chained systems

Zhan-ping Yuan , Zhu-ping Wang , Qi-jun Chen

Journal of Central South University ›› 2010, Vol. 17 ›› Issue (3) : 572 -579.

PDF
Journal of Central South University ›› 2010, Vol. 17 ›› Issue (3) : 572 -579. DOI: 10.1007/s11771-010-0525-1
Article

Adaptive output feedback control for uncertain nonholonomic chained systems

Author information +
History +
PDF

Abstract

An adaptive output feedback control was proposed to deal with a class of nonholonomic systems in chained form with strong nonlinear disturbances and drift terms. The objective was to design adaptive nonlinear output feedback laws such that the closed-loop systems were globally asymptotically stable, while the estimated parameters remained bounded. The proposed systematic strategy combined input-state-scaling with backstepping technique. The adaptive output feedback controller was designed for a general case of uncertain chained system. Furthermore, one special case was considered. Simulation results demonstrate the effectiveness of the proposed controllers.

Keywords

adaptive output feedback / input-state scaling / backstepping / nonholonomic system

Cite this article

Download citation ▾
Zhan-ping Yuan, Zhu-ping Wang, Qi-jun Chen. Adaptive output feedback control for uncertain nonholonomic chained systems. Journal of Central South University, 2010, 17(3): 572-579 DOI:10.1007/s11771-010-0525-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BrockettR.Asymptotic stability and feedback stabilization [M]. Differential Geometry Control Theory, 1983, Basel, Birkhauser: 181-208

[2]

AstolfiA.. Discontinuous control of nonholonomic systems [J]. Systems and Control Letters, 1996, 27: 37-45

[3]

MarchandN., AlamirM.. Discontinuous exponential stabilization of chained form systems [J]. Automatica, 2003, 39: 343-348

[4]

WalshG. C., BushnellL. G.. Stabilization of multiple input chained form control systems [J]. System and Control Letters, 1995, 25: 227-234

[5]

JiangZ.-ping.. Iterative design of time-varying stabilizers for multi-input systems in chained form [J]. Systems and Control Letters, 1996, 28: 255-262

[6]

SordalenO. J., de WitC. C.. Exponential stabilization of nonholonomic chained systems [J]. IEEE Trans Automatic Control, 1995, 40(1): 35-49

[7]

KolmanovskyI., McclamrochN. H.. Hybrid feedback laws for a class of cascaded nonlinear control systems [J]. IEEE Trans Automat Control, 1996, 41: 1271-1282

[8]

KOLMA NovskyI., McclamrochN. H.. Development in nonholonomic control problems [J]. IEEE Control System Magazine, 1995, 15(6): 20-36

[9]

MurrayR., SastryS.. Nonholonomic motion planning: Steering using sinusoids [J]. IEEE Trans Automat Control, 1993, 38: 700-716

[10]

M’CLOSKEY R, MURRAY R. Convergence rate for nonholonomic systems in power form [C]// Proceedings of the American Control Conference. Chicago, 1992: 2489–2493.

[11]

HuoW., GeS. S.. Exponential stabilization of nonholonomic systems: An eni approach [J]. International Journal of Control, 2001, 74(15): 1492-1500

[12]

OyaM., SuC. Y., KatohR.. Robust adaptive motion/force tracking control of uncertain nonholonomic mechanical systems [J]. IEEE Transaction on Robotics and Automation, 2003, 19(1): 175-181

[13]

MURRAY R, SASTRY S. Steering nonholonomic systems in chained forms [C]// Proceedings of the 30th IEEE Conference on Decision and Control. Brightom, 1991: 1121–1126.

[14]

COLBAUGH R, BARANY R, GLASS K. Adaptive control of nonholonomic mechanical systems [C]// Proceedings of the 35th IEEE Conference on Decision and Control. Kobe, 1996: 1428–1434.

[15]

GeS. S., WangJ., LeeT. H., ZhouG. Y.. Adaptive robust stabilization of dynamic nonholonomic chained systems [J]. Journal of Robotic Systems, 2001, 18(3): 119-133

[16]

HESPANHA J P, LIBERZON S, MORSE A S. Towards the supervisory control of uncertain nonholonomic systems [C]// Proceedings of the 1999 American Control Conference. San Diego, 1999: 3520–3524.

[17]

FIERRO R, LEWIS F L. Control of a nonholonomic mobile robot: Backstepping kinematics into dynamics [C]// Proceedings of the 34th IEEE Conference on Decision and Control. New Orleans, 1995: 1722–1727.

[18]

WangZ. P., GeS. S., LeeT. H.. Robust adaptive neural network control of uncertain nonholonomic systems with strong nonlinear drifts [J]. IEEE Transaction on Systems, Man, and Cybernetics—Part B: Cybernetics, 2004, 34(5): 2048-2059

[19]

DoK. D., PanJ.. Adaptive global stabilization of nonholonomic systems with strong nonlinear drifts [J]. Systems and Control Letters, 2002, 46: 195-205

[20]

JiangZ.-ping.. Robust exponential regulation of nonholonomic systems with uncertainties [J]. Automatica, 2000, 36: 189-209

[21]

GeS. S., WangZ. P., LeeT. H.. Adaptive stabilization of uncertain nonholonomic systems by state and output feedback [J]. Automatica, 2003, 39: 1451-460

[22]

XiZ.-r., FengG., JiangZ.-p., ChengD.-zhan.. Output feedback exponential stabilization of uncertain chained systems [J]. Journal of The Franklin Institute, 2007, 344: 36-57

[23]

SontagE. D.. Smooth stabilization implies coprime factorization [J]. IEEE Trans Automat Control, 1989, 34(4): 435-443

[24]

KrsticM., KanellakopoulosI., KokotovicP. V.Nonlinear and adaptive control design [M], 1995, New York, Wiley

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/