Synthesis of Li2Fe0.9Mn0.1SiO4/C composites using glucose as carbon source

Chun-li Peng , Jia-feng Zhang , Xuan Cao , Bao Zhang

Journal of Central South University ›› 2010, Vol. 17 ›› Issue (3) : 504 -508.

PDF
Journal of Central South University ›› 2010, Vol. 17 ›› Issue (3) : 504 -508. DOI: 10.1007/s11771-010-0514-4
Article

Synthesis of Li2Fe0.9Mn0.1SiO4/C composites using glucose as carbon source

Author information +
History +
PDF

Abstract

Li2Fe0.9Mn0.1SiO4/C composites were synthesized by using glucose as carbon source. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurements. All Li2Fe0.9Mn0.1SiO4/C composites are of the similar crystal structure. With increasing the carbon content in the range of 5%–20% (mass fraction), the diffraction peaks in XRD patterns broaden and the particle sizes and the tap density of samples decrease. The Li2Fe0.9Mn0.1SiO4/C composites with carbon content of 14.12% show excellent electrochemical performances with an initial discharge capacity of 154.7 mA·h/g at C/16 rate, and the capacity retention remains 92.2% after 30 cycles.

Keywords

lithium ion batteries / cathode / lithium iron orthosilicate / carbon coating

Cite this article

Download citation ▾
Chun-li Peng, Jia-feng Zhang, Xuan Cao, Bao Zhang. Synthesis of Li2Fe0.9Mn0.1SiO4/C composites using glucose as carbon source. Journal of Central South University, 2010, 17(3): 504-508 DOI:10.1007/s11771-010-0514-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BhuvaneswariM. S., BramnikN. N., EnslingD., EhrenbergH., JaegermannW.. Synthesis and characterization of carbon nano fiber/LiFePO4 composites for Li-ion batteries [J]. Journal of Power Sources, 2008, 180(1): 553-560

[2]

YuZ.-m., ZhaoL.-cheng.. Structure and electrochemical properties of LiMn2O4 [J]. Transactions of Nonferrous Metals Society of China, 2007, 17(3): 659-664

[3]

DominkoR., BeleM., GaberscekM., MedenA., RemskarM., JamnikJ.. Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials [J]. Electrochemistry Communications, 2006, 8(2): 217-222

[4]

YanX., YangG., LiuJ., GeY., XieH., PanX., WangR.. An effective and simple way to synthesize LiFePO4/C composite [J]. Electrochimica Acta, 2009, 54: 5770-5774

[5]

ZhangB., LiX.-h., LuoW.-b., WangZ.-xing.. Electrochemical properties of LiFe1−xMgxPO4 for cathode materials of lithium ion batteries [J]. Journal of Central South University: Science and Technology, 2006, 37(6): 1094-1097

[6]

DeniardP., DulacA. M., RocquefelteX., GrigordvaV., LebacqO., PasturelA., JobicS.. High potential positive materials for lithium-ion batteries: Transition metal phosphates [J]. Journal of Physics and Chemistry of Solids, 2004, 65: 229-233

[7]

ChungS. Y., BlokingJ. T., ChiangY. M.. Electronically conductive phosphor-olivines as lithium storage electrodes [J]. Nature Materials, 2002, 1(2): 123-128

[8]

FergusJ. W.. Recent developments in cathode materials for lithium ion batteries [J]. Journal of Power Sources, 2010, 195(4): 939-954

[9]

HongJ., WangC. S., ChenX., UpretiS., WhittinghamM. S.. Vanadium modified LiFePO4 cathode for Li-ion batteries [J]. Electrochemical and Solid-State Letters, 2009, 12(2): A33-A38

[10]

YangM. R., KeW. H., WuS. H.. Improving electrochemical properties of lithium iron phosphate by addition of vanadium [J]. Journal of Power Sources, 2007, 165(2): 646-650

[11]

ZhengJ.-c., LiX.-h., WangZ.-xing.. LiFePO4 with enhanced performance synthesized by a novel synthetic route [J]. Journal of Power Sources, 2008, 184(2): 574-577

[12]

ZHANG Bao, ZHANG Jia-feng, SHEN Chao, PENG Chun-li, LI Qian. Effects of reaction conditions on preparation of FePO4·2H2O and properties of LiFePO4 by solution precipitation route [C]// Proceedings of the Third IEEE International Nano Electronics Conference (INEC). Hongkong, 2010.

[13]

KokaljA., DominkoR., MaliG., MedenA., GabersecekM., JamnikJ.. Beyond one-electron reaction in Li cathode materials: Designing Li2MnxFe1−xSiO4 [J]. Chem Mater, 2007, 11(15): 3633-3638

[14]

DompabloM. E. A., ArmandM., TarasconJ. M., AmadorU.. On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li2MSiO4 system (M=Fe, Mn, Co, Ni) [J]. Electrochemistry Communications, 2006, 8(8): 1292-1298

[15]

LarssonP., AhujiaR., NyténA., ThomasJ.. An ab initio study of the Li-battery cathode material Li2FeSiO4 [J]. Electrochemistry Communications, 2006, 8(5): 797-800

[16]

PadhiA. K., NanjundaswamyK. S., MasquelierC., OkadaS., GoodenoughJ. B.. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates [J]. J Electrochem Soc, 1997, 144(5): 1609-1702

[17]

NyténA., AbouimraneA., ArmandM., GustafssonT., ThomasJ. O.. Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material [J]. Electrochemistry Communications, 2005, 7(2): 156-160

[18]

ZaghibK., SalahA. A., RavetN., MaugerA., GendronF., JulienC. M.. Structural, magnetic and electrochemical properties of lithium iron orthosilicate [J]. Journal of Power Sources, 2006, 160(2): 1381-1386

[19]

DominkoR., ConteD. E., HanzelD., GaberscekM., JamnikJ.. Impact of synthesis conditions on the structure and performance of Li2FeSiO4 [J]. Journal of Power Sources, 2008, 178(2): 842-847

[20]

GongZ. L., LiY. X., YangY.. Synthesis and characterization of Li2MnxFe1−xSiO4 as a cathode material for lithium-ion batteries [J]. Electrochemical and Solid State Letters, 2006, 9(12): A542-A544

[21]

GongZ. L., LiY. X., YangY.. Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol-gel process [J]. Electrochemical and Solid State Letters, 2008, 11(5): A60-A63

[22]

LiL.-m., GuoH.-j., LiX.-h., WangZ.-x., PengW.-j., XiangK.-x., CaoX.. Effects of roasting temperature and modification on properties of Li2FeSiO4/C cathode [J]. Journal of Power Sources, 2009, 189(1): 45-50

AI Summary AI Mindmap
PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/