Kinetics analysis of Ni-TiO2 composite system during initial stages of electro-crystallization

Wei Hu , Cheng-yu Tan , Hang Cui , Yu Liu , Zi-qiao Zheng

Journal of Central South University ›› 2010, Vol. 17 ›› Issue (3) : 460 -466.

PDF
Journal of Central South University ›› 2010, Vol. 17 ›› Issue (3) : 460 -466. DOI: 10.1007/s11771-010-0507-3
Article

Kinetics analysis of Ni-TiO2 composite system during initial stages of electro-crystallization

Author information +
History +
PDF

Abstract

The initial stage of Ni-TiO2 composite system electrodeposition on glassy carbon electrode from an acidic solution of nickel sulfate was investigated using cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). Analysis of current density-time transients was performed using the nonlinear fitting procedure and electrochemical impedance spectroscopy was simulated by Z-view software. Besides, the surface morphology of Ni-TiO2 co-deposition at the initial stage was observed by scanning electron microscopy (SEM). The results show that, in the case of low overpotential (−790 mV vs SCE), the presence of TiO2 particles in the plating bath makes the nucleation relaxation time tmax decreased clearly. Meanwhile, the electro-crystallization of Ni-TiO2 system follows a Scharifker-Hills (SH) progressive nucleation/growth mechanism. While in the case of higher overpotential, the presence of the TiO2 particles in solution makes the nucleation relaxation time tmax increased. At −850 mV (vs SCE), the co-deposition of Ni-TiO2 system meets SH instantaneous nucleation/growth mechanism. The results of impedance spectra show that the appearance of the characteristic inductive loops represents the nucleation/growth of nickel and the presence of TiO2 particles reduces the charge transfer resistance of solution. The SEM observation confirms that TiO2 particles can be considered as favorable sites for nickel nucleating.

Keywords

Ni-TiO2 system / kinetics / electro-crystallization / cyclic voltammetry / electrochemical impedance spectroscopy

Cite this article

Download citation ▾
Wei Hu, Cheng-yu Tan, Hang Cui, Yu Liu, Zi-qiao Zheng. Kinetics analysis of Ni-TiO2 composite system during initial stages of electro-crystallization. Journal of Central South University, 2010, 17(3): 460-466 DOI:10.1007/s11771-010-0507-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BeneaL., BonoraP. L., BorelloA., MartelliS., WengerF., PonthiauxP., GallandJ.. Preparation and investigation of nano-structured SiC-Ni layers by electrodeposition [J]. Solid State Ionics, 2002, 151(1/4): 89-95

[2]

LiJ., SunY., SunX., QiaoJ.. Mechanical and corrosion-resistance performance of electrodeposited titania-nickel nano-composite coating [J]. Surface and Coatings Technology, 2005, 192(2/3): 331-335

[3]

PengX., ZhangY., ZhaoJ., WangF.. Electrochemical corrosion performance in 3.5% NaCl of the electrodeposited nanocrystalline Ni films with and without dispersions of Cr nanoparticles [J]. Electrochimica Acta, 2006, 51(23): 4922-4927

[4]

WangH.-z., YaoS.-wei.. Electrochemical preparation and characterization of Ni/SiC gradient deposit [J]. Journal of Materials Processing Technology, 2004, 145(3): 299-302

[5]

HuF., ChanK. C.. Equivalent circuit modelling of Ni-SiC electrodeposition under ramp-up and ramp-down waveforms [J]. Materials Chemistry and Physics, 2006, 99(2/3): 424-430

[6]

LeeH. K., LeeH. Y., JeonJ. M.. Codeposition of micro- and nano-sized SiC particles in the nickel matrix composite coatings obtained by electroplating [J]. Surface and Coatings Technology, 2007, 201(8): 4711-4717

[7]

LinC. S., HuangK. C.. Co-deposition and microstructure of Ni-SiC composite coating electrodeposited from sulphamate bath [J]. Journal of Applied Electrochemistry, 2004, 34(10): 1013-1019

[8]

HuF., ChanK. C.. Deposition behavior and morphology of Ni-SiC electro-composites under triangular waveform [J]. Applied Surface Science, 2005, 243(1/4): 251-258

[9]

ZhaQ.-xing.Guide to dynamics of electrode process [M], 20043rd ed.Beijing, Scientific and Technical Press: 308-310

[10]

BewickA., FleischmannM., ThirskH. R.. Kinetics of the electro-crystallization of thin films of calomel [J]. Transactions of the Faraday Society, 1962, 58: 2200-2216

[11]

BardA. J., FaulknerL. R.Electrochemical methods fundamentals and applications [M], 20052nd ed.Beijing, Chemical Industry Press: 110-153

[12]

MilchevA.Electro-crystallization-Fundamentals of nucleation and growth [M], 2002, New York, Kluwer Academic Publishers: 220-240

[13]

BudevskiE., StailovG., LorenzW. J.. Electro-crystallization: Nucleation and growth phenomena [J]. Electrochimica Acta, 2000, 45(15/16): 2559-2574

[14]

MilchevA., HeermanL.. Electrochemical nucleation and growth of nano-and microparticles: Some theoretical and experimental aspects [J]. Electrochimica Acta, 2003, 48(20/22): 2903-2913

[15]

Sluyters-RehbachM., WijenbergJ. H. O. J., BoscoE., SluytersJ. H.. The theory of chronoamperometry for the investigation of electro-crystallization: Mathematical description and analysis in the case of diffusion-controlled growth [J]. Journal of Electroanalytical Chemistry, 1987, 236(1/2): 1-20

[16]

HeermanL., TaralloA.. Theory of the chronoamperometric transient for electrochemical nucleation with diffusion-controlled growth [J]. Journal of Electroanalytical Chemistry, 1999, 470(1): 70-76

[17]

HeermanL., TaralloA.. Electrochemical nucleation with diffusion-limited growth: Properties and analysis of transients [J]. Electrochemistry Communications, 2000, 2(2): 85-89

[18]

HeermanL., TaralloA.. Electrochemical nucleation on microelectrodes: Theory and experiment for diffusion-controlled growth [J]. Journal of Electroanalytical Chemistry, 1998, 451(1/2): 101-109

[19]

TanC.-y., LiuY., ZhaoX.-s., ZhengZ.-qiao.. Nickel co-deposition with SiC particles at initial stage [J]. Transactions of Nonferrous Metals Society of China, 2008, 18(5): 1128-1133

[20]

FleischmannM., ThirskH. R.. Kinetics of the growth of deposits on electrodes [J]. Eletroshimica Acta, 1959, 1: 146-160

[21]

HolzleM. H., RetterU., KolbD. M.. The kinetics of structural changes in glass carbon layers on Au(III) [J]. Journal of Electroanalytical Chemistry, 1994, 371(1): 101-109

[22]

EnriqueB., ManuelP. P., NikolaB., IgnacioG.. Formation mechanisms and characterization of black and white cobalt electrdeposition onto stainless steel [J]. Journal of Electrochemical Society, 2000, 147(5): 1787-1796

[23]

GomezE., MullerC., ProudW. G., VallesE.. Electrodeposition of nickel on vitreous carbon: Influence of potential on deposit morphology [J]. Journal of Applied Electrochemistry, 1992, 22(9): 872-876

[24]

WatsonS. W., WaltersP. R.. The effect of chromium particles on nickel electrodeposition [J]. Journal of Electrochemical Society, 1991, 138(12): 3633-3637

[25]

NowakP., SochaR. P., KaishevaM., FransaerJ., CelisJ. P., StoinovZ.. Electrochemical investigation of the codeposition of SiC and SiO2 particles with nickel [J]. Journal of Applied Electrochemistry, 2004, 21(30): 429-437

[26]

EpelboinI., JoussellinM., WiartR.. Impedance measurements for nickel deposition in sulfate and chloride electrolytes [J]. Journal of Electroanalytical Chemistry, 1981, 119: 61

[27]

FranceschettiD. R., MacdonaldJ. R.. Electrode-kinetics, equivalentcircuits, and system characterization-small-single conditions [J]. Journal of Electroanalytical Chemistry, 1997, 2(82): 271-301

[28]

MacdonaldJ. R.Impedance spectroscopy [M], 1987, New York, John Wiley and Sons: 95-99

[29]

CaoC.-n., ZhangJ.-qing.A preview of electrochemical impedance spectroscopy [M], 2004, Beijing, Science Press: 3-9

[30]

ShiM.-lun.AC impedance spectroscopy principles and applications [M], 2001, Beijing, Nation Defence Industry Press: 1-3

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/