Effect of interaction of dislocations with core-shell nanowires on critical shear stress of nanocomposites

Qi-hong Fang , Yong Liu , Hui-zhong Li , Bo-yun Huang

Journal of Central South University ›› 2010, Vol. 17 ›› Issue (3) : 437 -442.

PDF
Journal of Central South University ›› 2010, Vol. 17 ›› Issue (3) : 437 -442. DOI: 10.1007/s11771-010-0503-7
Article

Effect of interaction of dislocations with core-shell nanowires on critical shear stress of nanocomposites

Author information +
History +
PDF

Abstract

The contribution to the critical shear stress of nanocomposites caused by the interaction between screw dislocations and core-shell nanowires (coated nanowires) with interface stresses was derived by means of the MOTT and NABARRO’s model. The influence of interface stresses on the critical shear stress was examined. The result indicates that, if the volume fraction of the core-shell nanowires keeps a constant, an optimal critical shear stress may be obtained when the radius of the nanowire with interface stresses reaches a critical value, which differs from the classical solution without considering the interface stresses under the same external conditions. In addition, the material may be strengthened by the soft nanowires when the interface stresses are considered. There also exist critical values of the elastic modulus and the thickness of surface coating to alter the strengthening effect produced by it.

Keywords

nanocomposites / dislocations / nanowire / interface stress / critical shear stress

Cite this article

Download citation ▾
Qi-hong Fang, Yong Liu, Hui-zhong Li, Bo-yun Huang. Effect of interaction of dislocations with core-shell nanowires on critical shear stress of nanocomposites. Journal of Central South University, 2010, 17(3): 437-442 DOI:10.1007/s11771-010-0503-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WegroweJ. E., SallinA., FabianA., CommentA., BonardJ. M., AnsermetJ. P.. Magnetoresistance properties of granular nanowires composed of carbon nanoparticles embedded in a Co matrix [J]. Physical Review B, 2001, 65(1): 012407-6

[2]

ZhangX.-m., YeL.-y., LiuY.-w., DuY.-x., LuoZ.-hui.. Formation mechanism of gradient-distributed particles and their effects on grain structure in 01420 Al-Li alloy [J]. Journal of Central South University of Technology, 2008, 15(2): 147-152

[3]

WenB., SaderJ. E., BolandJ. J.. Mechanical properties of ZnO nanowires [J]. Physical Review Letters, 2008, 101(17): 175502-1-175502-3

[4]

TsuchidaE., OhnoM., KourisD. A.. Effects of an inhomogeneous elliptical insert on the elastic field of an edge dislocation [J]. Applied Physics A, 1991, 53(4): 285-291

[5]

XiaoZ. M., ChenB. J.. A screw dislocation interacting with a coated fiber [J]. Mechanics of Materials, 2000, 32(8): 485-494

[6]

FangQ.-h., LiuY.-wen.. Size-dependent interaction between an edge dislocation and a nanoscale inhomogeneity with interface effects [J]. Acta Materialia, 2006, 54(16): 4213-4220

[7]

TakahashiA., GhoniemN. M.. A computational method for dislocation-precipitate interaction [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(4): 1534-1553

[8]

FangQ.-h., LiuY.-w., ChenJ.-hua.. Misfit dislocation dipoles and critical parameters of buried strained nanoscale inhomogeneity [J]. Applied Physics Letters, 2008, 92(12): 121923-3

[9]

FangQ.-h., LiuY.-w., JinB., WenP.-hua.. Effect of interface stresses on the image force and stability of an edge dislocation inside a nanoscale cylindrical inclusion [J]. International Journal of Solids and Structures, 2009, 46(6): 1413-1422

[10]

DavoudiK. M., GutkinM. Y., ShodjaH. M.. A screw dislocation near a circular nano-inhomogeneity in gradient elasticity [J]. International Journal of Solids and Structures, 2010, 47(3): 741-750

[11]

BrandsM., CarlA., PosthO., DumpichG.. Electron-electron interaction in carbon-coated ferromagnetic nanowires [J]. Physical Review B, 2005, 72(8): 085457-8

[12]

MartinC. R., SiwyZ.. Molecular filters: Pores within pores [J]. Nature Materials, 2004, 3(1): 284-285

[13]

DuanH. L., WangJ., KarhalooB. L., HuangZ. P.. Nanoporous materials can be made stiffer than non-porous counterparts by surface modification [J]. Acta Materialia, 2006, 54(11): 2983-2990

[14]

NembachE.Particle strengthening of metals and alloys [M], 1996, New York, Wiley: 153-162

[15]

RussellK. C., BrownL. M.. A dispersion strengthening model based on different elastic moduli applied to the Fe-Cu system [J]. Acta Metallurgica, 1972, 20(2): 969-974

[16]

NembachE.. Precipitation hardening caused by a difference in shear modulus between particle and matrix [J]. Physica Status Solidi A, 1983, 78(2): 571-581

[17]

FangQ.-h., LiuY., HuangB.-y., LiuY.-w., WenP.-hua.. Contribution to critical shear stress of nanocomposites produced by interaction of screw dislocation with nanoscale inclusion [J]. Materials Letters, 2008, 62(20): 3521-3523

[18]

MeiQ. S., LuK.. Melting and superheating of crystalline solids: Form bulk to nanocrystals [J]. Progress in Materials Science, 2007, 52(8): 1175-1262

[19]

FangQ.-h., LiuY.-w., JinB., WenP.-hua.. Interaction between a dislocation and a core-shell nanowire with interface effects [J]. International Journal of Solids and Structures, 2009, 47(6): 1539-1546

[20]

MUSKHELISHVILI N L. Some basic problems of mathematical theory of elasticity [M]. Leyden: Noordhoff, 1975: 223-227.

[21]

MillerR. E., ShenoyV. B.. Size-dependent elastic properties of nanosize structural elements [J]. Nanotechnology, 2000, 11(3): 139-147

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/