A novel particle swarm optimizer without velocity: Simplex-PSO
Hong-feng Xiao , Guan-zheng Tan
Journal of Central South University ›› 2010, Vol. 17 ›› Issue (2) : 349 -356.
A novel particle swarm optimizer without velocity: Simplex-PSO
A simplex particle swarm optimization (simplex-PSO) derived from the Nelder-Mead simplex method was proposed to optimize the high dimensionality functions. In simplex-PSO, the velocity term was abandoned and its reference objectives were the best particle and the centroid of all particles except the best particle. The convergence theorems of linear time-varying discrete system proved that simplex-PSO is of consistent asymptotic convergence. In order to reduce the probability of trapping into a local optimal value, an extremum mutation was introduced into simplex-PSO and simplex-PSO-t (simplex-PSO with turbulence) was devised. Several experiments were carried out to verify the validity of simplex-PSO and simplex-PSO-t, and the experimental results confirmed the conclusions: (1) simplex-PSO-t can optimize high-dimension functions with 200-dimensionality; (2) compared PSO with chaos PSO (CPSO), the best optimum index increases by a factor of 1×102–1×104.
Nelder-Mead simplex method / particle swarm optimizer / high-dimension function optimization / convergence analysis
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
/
| 〈 |
|
〉 |