Quantitative description of infrared radiation characteristics for solid materials subjected to external loading
Fang Wang , Ying-jun Li , Qiu-hua Rao , Lian Tang
Journal of Central South University ›› 2009, Vol. 16 ›› Issue (6) : 1022 -1027.
Quantitative description of infrared radiation characteristics for solid materials subjected to external loading
Based on the thermodynamics theory and physical micro-properties of solid materials subjected to external loading at room temperature, a formula of calculating temperature difference of infrared radiation in terms of the sum of three principal strains was deduced to quantitatively investigate the infrared radiation characteristics in test. Two typical specimens, the three-point bending beam and the disc pressed in diameter, were tested and their principal strains were calculated by finite element method in order to obtain the temperature differences of infrared radiation. Numerical results are in a good agreement with test results, which verifies the validity of the formula of calculating temperature differences of infrared radiation and the model of quantitatively describing the infrared radiation characteristics of solid materials, and reveals the corresponding inner physical mechanism.
Infrared radiation characteristics / thermodynamics analysis / numerical simulation / strain tensor
| [1] |
LIU Shan-jun, YANG Dong-ping, MA Bao-dong, WU Li-xin, LI Jin-ping, DONG Yan-qing. On the features and mechanism of satellite infrared anomaly before earthquakes in Taiwan region[C]//Geoscience and Remote Sensing Symposium. Barcelona, 2001: 3719–3722. |
| [2] |
|
| [3] |
LUONG M P. Fatigue evaluation of metals infrared thermography[C]//The Second International Conference on Experimental Mechanics. Singapore, 2001: 297–302. |
| [4] |
WU Li-xin, ZHONG Sheng, WU Yu-hua. Fundamental research on remote sensing the strain and catastrophe of concrete under uniaxial compression[J]. International Geoscience and Remote Sensing Symposium, 2005(3): 1760–1763. |
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
AN Li-qian, ZHANG Dong-sheng. Quantitative analysis between infrared temperature field and photo-elastic stress field[C]//Proceedings of the 21st International Symposium on Computer Application in Minerals Industries. Beijing, 2001: 689–692. |
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
/
| 〈 |
|
〉 |