Flexural strength of zirconia/stainless steel functionally graded materials

Jun Li , Kang Zhao , Yu-fei Tang , Da-yu Li

Journal of Central South University ›› 2009, Vol. 16 ›› Issue (6) : 892 -896.

PDF
Journal of Central South University ›› 2009, Vol. 16 ›› Issue (6) : 892 -896. DOI: 10.1007/s11771-009-0148-6
Article

Flexural strength of zirconia/stainless steel functionally graded materials

Author information +
History +
PDF

Abstract

Zirconia/stainless steel (ZrO2/SUS316L) functionally graded materials (FGMs) were fabricated by tape casting and laminating. Microstructures of FGMs were observed by optical microscope. Fracture behavior of FGMs in different loading modes and influences of different gradient changes on flexural strength were investigated. The results show that ZrO2/ SUS316L FGMs with graded components at interlayers are obtained after they are sintered in vacuum and pressureless condition at 1 350 °C. The I–II mixed mode crack creates in composite layer and grows to both sides zigzag while loading on ZrO2 layer. Flexural strengths are 496.4, 421.7 and 387.5 MPa when gradient changes are 10%, 15% and 20%, but flexural strengths of the corresponding fracture layers are 387.1, 334.6 and 282.3 MPa since cracks of FGMs are affected by three-dimensional stress, respectively. The cracks are generated in ZrO2 layer and extend to SUS316L layer while loading is added on SUS316L layer, flexural strength does not change with the graded components and keeps consistent basically.

Keywords

ZrO2 / functionally graded materials / flexural strength / fracture / tape casting

Cite this article

Download citation ▾
Jun Li, Kang Zhao, Yu-fei Tang, Da-yu Li. Flexural strength of zirconia/stainless steel functionally graded materials. Journal of Central South University, 2009, 16(6): 892-896 DOI:10.1007/s11771-009-0148-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MitteauR., MissiaenJ. M., BrustolinP., OzerO., DurocherA., RusetC., LunguC. P., CourtoisX., DominicyC., MaierH., GrisoliaC., PiazzaG., ChappuisP.. Recent developments toward the use of tungsten as armour material in plasma facing components[J]. Fusion Engineering and Design, 2007, 82(15/24): 1700-1705

[2]

ShokriehM. M., JavadpourG. H.. Penetration analysis of a projectile in ceramic composite armor[J]. Composites Structure, 2008, 82(2): 269-276

[3]

MaB.-y., YuJ.-k., LiuT., YanZ.-guo.. Preparation of β-Sialon/ZrN bonded corundum composites from zircon by nitridation[J]. Journal of Central South University of Technology, 2009, 16(5): 725-729

[4]

AnnikaP., PernillaM., PatrikL., MatsN.. Titanium-titanium diboride composites as part of a gradient amour material[J]. International Journal of Impact Engineering, 2005, 32(1/4): 387-399

[5]

HanH., LiJ., JiaoL.-j., LiNan.. Study on the application of ceramic-metal composite materials in bulletproof field[J]. Material Review, 2007, 21(2): 34-37

[6]

AmitK. C., KimJ. H.. Interaction integrals for thermal fracture of functionally graded materials[J]. Engineering Fracture Mechanics, 2008, 75(8): 2542-2565

[7]

LopezE. S., BartolomeJ. F., PecharromanC., MoyaJ. S.. Zirconia/stainless-steel continuous functionally graded material[J]. Journal of European Ceramics Society, 2002, 22(16): 2799-2804

[8]

TetsuroO., YoshimiW., HisashiS., KimI., FukuiY.. Theoretical study on fabrication of functionally graded material with density gradient by a centrifugal solid-particle method[J]. Composites: Part A, 2006, 37(12): 2194-2200

[9]

ZhouS.-w., LiQing.. Micro structural design of connective base cells for functionally graded materials[J]. Materials Letter, 2008, 62(24): 4022-4024

[10]

HeianE. M., GibelingJ. C., MunirZ. A.. Synthesis and characterization of Nb5Si3/Nb functionally graded composites[J]. Materials Science and Engineering A, 2004, 368(1): 168-174

[11]

PutS., VleugelsJ., vander BiestO.. Microstructural engineering of functionally graded materials by electrophoretic deposition[J]. Journal of Materials Processing Technology, 2003, 143(20): 572-577

[12]

LuYun.Advance composites[M], 2003, Beijing, China Machine Press

[13]

GaoX. W., ZhangC., SladekJ., SladekV.. Fracture analysis of functionally graded materials by a BEM[J]. Composites Science and Technology, 2008, 68(5): 1209-1215

[14]

HuangZ.-q., HeY.-h., CaiH.-t., WuC.-h., XiaoY.-f., HuangB.-yun.. Thermal residual stress analysis of diamond coating on graded cemented carbides[J]. Journal of Central South University of Technology, 2008, 15(2): 165-169

[15]

ZhangS.-q., ZhangK.-w., YangW.-yang.. Fracture analysis of mode I crack in functional gradient materials[J]. Journal of Taiyuan University of Technology, 2005, 36(4): 173-176

[16]

ZhangS.-q., ZhangK.-w., YangW.-yang.. Fracture analysis of mode II crack in functional gradient materials[J]. Journal of North University of China: Natural Science, 2006, 27(6): 644-648

[17]

NikhilG., SandeepK. G., BenjaminJ. M.. Analysis of a functionally graded particulate composite under flexural loading conditions[J]. Materials Science and Engineering A, 2008, 485(1/2): 439-447

[18]

ZhaoK., LiJ., TangY.-f., XuLei.. Fabrication and properties of ZrO2/stainless steel functionally graded materials by tape casting[J]. Journal of the Chinese Ceramic Society, 2008, 36(8): 1042-1046

[19]

ZhangW.-q., XieJ.-x., WangC.-zeng.. Properties of 316L/PSZ composites fabricated by means of extrusion forming and gas-pressure sintering[J]. Materials Science and Engineering A, 2004, 382(1/2): 387-394

[20]

OdegardC., BronsonA.. The reactive liquid processing of ceramic-metal composites[J]. Journal of Minerals, 1997, 49(6): 52-54

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/