Thermal-mechanical properties of short carbon fiber reinforced geopolymer matrix composites subjected to thermal load

Tie-song Lin , De-chang Jia , Pei-gang He , Mei-rong Wang

Journal of Central South University ›› 2009, Vol. 16 ›› Issue (6) : 881 -886.

PDF
Journal of Central South University ›› 2009, Vol. 16 ›› Issue (6) : 881 -886. DOI: 10.1007/s11771-009-0146-8
Article

Thermal-mechanical properties of short carbon fiber reinforced geopolymer matrix composites subjected to thermal load

Author information +
History +
PDF

Abstract

Short carbon fiber preform reinforced geopolymer composites containing different contents of α-Al2O3 filler (Cf(α-Al2O3)/geopolymer composites) were fabricated, and the effects of heat treatment temperatures up to 1 200 °C on the thermal-mechanical properties were studied. The results show that the thermal shrinkage in the direction perpendicular to the lamination of the composites gradually increases with the increase of the heat treatment temperatures from room temperature (25 °C) to 1 000 °C. However, the composites in the direction parallel to the lamination show an expansion behavior. Beyond 1 000 °C, in the two directions the composites exhibit a larger degree of shrinkage due to the densification and crystallization. The mechanical properties of the composites show the minimum values in the temperature range from 600 to 800 °C as the hydration water of geopolymer matrix is lost. The addition of α-Al2O3 particle filler into the composites clearly increases the onset crystalline temperature of leucite (KAlSi2O6) from the amorphous geopolymer matrix. In addition, the addition of α-Al2O3 particles into the composites can not only help to keep volume stable at high temperatures but also effectively improve the mechanical properties of the composites subjected to thermal load to a certain extent. The main toughening mechanisms of the composites subjected to thermal load are attributed to fiber pulling-out.

Keywords

short carbon fiber / α-Al2O3 / thermal-mechanical properties / geopolymer / thermal load

Cite this article

Download citation ▾
Tie-song Lin, De-chang Jia, Pei-gang He, Mei-rong Wang. Thermal-mechanical properties of short carbon fiber reinforced geopolymer matrix composites subjected to thermal load. Journal of Central South University, 2009, 16(6): 881-886 DOI:10.1007/s11771-009-0146-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LyonR. E., BalaguruP. N., FodenA., SorathiaU., DavidovitsJ.. Fire resistant aluminosilicate composites[J]. Fire and Materials, 1997, 21: 67-73

[2]

DavidovitsJ.. Geopolymer: Inorganic polymeric new materials[J]. Journal of Thermal Analysis, 1991, 37(8): 1633-1656

[3]

PapakonstantinouC. G., BalaguruP., LyonR. E.. Comparative study of high temperature composites[J]. Composites: Part B, 2001, 32: 637-649

[4]

BarbosV. F. F., MackenzieK. J. D.. Synthesis and thermal behaviour of potassium sialate geopolymers[J]. Materials Letters, 2003, 57: 1477-1482

[5]

VanriessenA.. Thermo-mechanical and microstructural characterization of sodium-poly(sialate-siloxo) (Na-PSS) geopolymers[J]. Journal of Materials Science, 2007, 42: 3117-3123

[6]

ZhangY.-s., SunW., LiZ.-jin.. Impact behavior and microstructural characteristics of PVA fiber reinforced fly ash-geopolymer boards prepared by extrusion technique[J]. Journal of Materials Science, 2006, 41: 2787-2794

[7]

LiZ.-j., ZhangY.-s., ZhouX.-ming.. Short fiber reinforced geopolymer composites manufactured by extrusion[J]. Journal of Materials in Civil Engineering, 2005, 17(6): 624-631

[8]

KrivenW. M., BellJ. L., GordonM.. Effect of alkali choice on geopolymer properties [J]. Ceramic Engineering and Science Proceedings, 2004, 25(3/4): 99-104

[9]

LinT.-s., JiaD.-c., HeP.-g., WangM.-r., LiangD.-fu.. Effects of fiber length on mechanical properties and fracture behavior of short carbon fiber reinforced geopolymer matrix composites[J]. Materials Science and Engineering A, 2008, 497: 181-185

[10]

ZhangZ.-h., YaoX., ZhuH.-j., HuaS.-d., ChenY.. Preparation and mechanical properties of polypropylene fiber reinforced calcined kaolin-fly ash based geopolymer[J]. Journal of Central South University of Technology, 2009, 16(1): 49-52

[11]

DuxsonaP., ProvisJ. L., LukeyG. C., MallicoatS. W., KrivenW. M., VandeventerJ. S. T.. Understanding the relationship between geopolymer composition, microstructure and mechanical properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 269: 47-58

[12]

BarbodsaV. F. F., MackenzieK. J. D.. Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate[J]. Materials Research Bulletin, 2003, 38: 319-331

[13]

KongD. L., SanjayanJ. G., Sagoe-CrentsilK.. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures[J]. Cement and Concrete Research, 2007, 37: 1583-1589

[14]

ZudaL., PavlikZ., RovnanikovaP., BayrerP., CernyR.. Properties of alkali activated aluminosilicate material after thermal load[J]. International Journal of Thermophysics, 2006, 27(4): 1250-1263

[15]

ZudaL., BayrerP., RovnanikP., CernyR.. Mechanical and hydric properties of alkali-activated aluminosilicate composite with electrical porcelain aggregates[J]. Cement and Concrete Composites, 2008, 30: 266-273

[16]

DuxsonaP., LukeyG. C., VandeventerJ. S. J.. Thermal evolution of metakaolin geopolymers: Part 1-Physical evolution[J]. Journal of Non-Crystalline Solids, 2006, 352: 5541-5555

[17]

DuxsonaP., LukeyG. C., VandeventerJ. S. J.. The thermal evolution of metakaolin geopolymers: Part 2-Phase stability and structural development[J]. Journal of Non-Crystalline Solids, 2007, 353: 2186-2200

[18]

DuxsonaP., LukeyG. C., VandeventerJ. S. J.. Physical evolution of Na-geopolymer derived from metakaolin up to 1 000 °C [J]. Journal of Materials Science, 2007, 42: 3044-3054

[19]

KRIVEN W M, GORDON M, BELL J L. Geopolymers: Nanoparticulate, nanoporous ceramics made under ambient conditions[EB/OL]. [2007-12-08]. https://doi.org/kriven.mse.uiuc.edu/recent/recent.htm.

[20]

GuanF., ZhongH., LiuG.-y., ZhaoS.-g., XiaL.-yin.. Flotation of aluminosilicate minerals using alkylguanidine collectors[J]. Transactions of Nonferrous Metals Society of China, 2009, 19: 228-234

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/