Morphologies of hydroxyapatite nanoparticles adjusted by organic additives in hydrothermal synthesis

Hai-bin Zhang , Ke-chao Zhou , Zhi-you Li , Su-ping Huang , Yan-zhong Zhao

Journal of Central South University ›› 2009, Vol. 16 ›› Issue (6) : 871 -875.

PDF
Journal of Central South University ›› 2009, Vol. 16 ›› Issue (6) : 871 -875. DOI: 10.1007/s11771-009-0144-x
Article

Morphologies of hydroxyapatite nanoparticles adjusted by organic additives in hydrothermal synthesis

Author information +
History +
PDF

Abstract

Properties of hydroxyapatite (HA, Ca10(PO4)6(OH)2), including bioactivity, biocompatibility, solubility and adsorption could be tailored over wide ranges by the control of particle composition, particle size and morphology. In order to satisfy various applications, well-crystallized pure HA nanoparticles were synthesized at moderate temperatures by hydrothermal synthesis, and HA nanoparticles with different lengths were obtained by adding organic additives. X-ray diffractometry (XRD) and Fourier transform infrared (FTIR) spectrometry were used to characterize these nanoparticles, and the morphologies of the HA particles were observed by transmission electron microscopy (TEM). The results demonstrate that shorter rod-like HA particles can be prepared by adding cetyltrimethylammonium bromide (CTAB), as the additive of CTAB can block the HA crystal growth along with c-axis. And whisker HA particles are obtained by adding ethylenediamine tetraacetic acid (EDTA), since EDTA may have effect on the dissolution-reprecipitation process of HA.

Keywords

hydroxyapatite nanoparticles / hydrothermal method / morphologies / organic additive / cetyltrimethylammonium bromide / ethylenediamine tetraacetic acid

Cite this article

Download citation ▾
Hai-bin Zhang, Ke-chao Zhou, Zhi-you Li, Su-ping Huang, Yan-zhong Zhao. Morphologies of hydroxyapatite nanoparticles adjusted by organic additives in hydrothermal synthesis. Journal of Central South University, 2009, 16(6): 871-875 DOI:10.1007/s11771-009-0144-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

JevticM., MitricM., SkapinS., JancarB., IgnjatovicN., UskokovicD.. Crystal structure of hydroxyapatite nanorods synthesized by sonochemical homogeneous precipitation[J]. Crystal Growth and Design, 2008, 8(7): 2217-2222

[2]

ZouJ.-p., RuanJ.-m., HuangB.-y., LiuJ.-b., ZhouX.-xia.. Physico-chemical properties and microstructure of hydroxyapatite 2316L stainless steel biomaterials[J]. Journal of Central South University of Technology, 2004, 11(2): 113-118

[3]

MatsumotoT., OkazakiM., InoueM., YamaguchiS., KusunoseT., ToyonagaT., HamadaY., TakahashiJ.. Hydroxyapatite particles as a controlled release carrier of protein[J]. Biomaterials, 2004, 25: 3807-3812

[4]

ZhuS.-h., HuangB.-y., ZhouK.-c., HuangS.-p., LiuF., LiY.-ming.. Hydroxyapatite nanoparticles as a novel gene carrier[J]. Journal of Nanoparticle Research, 2004, 6: 307-311

[5]

IokuK., YamauchiS., FujimoriH., GotoS., YoshimuraM.. Hydrothermal preparation of fibrous apatite and apatite sheet[J]. Solid State Ionics, 2002, 151: 147-150

[6]

ParkY. M., RyuS. C., YoonS. Y., StevensR., ParkH. C.. Preparation of whisker-shaped hydroxyapatite/β-tricalcium phosphate composite[J]. Materials Chemistry and Physics, 2008, 109: 440-447

[7]

YanL., LiY.-d., DengZ.-x., ZhuangJ., SunX.-ming.. Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanorods[J]. International Journal Inorganic Materials, 2001, 3(7): 633-637

[8]

SujaridworakunP., KohF., FujiwaraT., PongkaoD., AhniyazA., YoshimuraM.. Preparation of anatase nanocrystals deposited on hydroxyapatite by hydrothermal treatment[J]. Materials Science and Engineering C, 2005, 25(1): 87-91

[9]

YoshimuraM., SujaridworakunP., KohF., FujiwaraT., PongkaoD., AhniyazA.. Hydrothermal conversion of calcite crystals to hydroxyapatite[J]. Materials Science and Engineering C, 2004, 24(4): 521-525

[10]

RimanR. E., SuchanekW. L., ByrappaK., ChenC. W., ShukP., OakesC. S.. Solution synthesis of hydroxyapatite designer particulates[J]. Solid State Ionics, 2002, 151: 393-402

[11]

ChangM. C., IkomaT., KikuchiM., TanakaJ.. Crosslinkage of hydroxyapatite/collagen nanocomposite using glutaraldehyde[J]. Journal of Materials Science: Materials in Medicine, 2002, 13: 993-997

[12]

ChangM. C., KoC. C., DouglasW. H.. Preparation of hydroxyapatite-gelatin nanocomposite[J]. Biomaterials, 2003, 24: 2853-2862

[13]

ZhaiY., CuiF. Z.. Recombinant human-like collagen directed growth of hydroxyapatite nanocrystals[J]. Journal of Crystal Growth, 2006, 291: 202-206

[14]

ZhangF., ZhouZ.-h., YangS.-p., MaoL.-h., ChenH.-m., YuX.-bin.. Hydrothermal synthesis of hydroxyapatite nanorods in the presence of anionic starburst dendrimer[J]. Materials Letters, 2005, 59: 1422-1425

[15]

WangA. L., YinH. B., LiuD., WuH. X., WadaY. J., RenM., XuY. Q., JiangT. S., ChengX. N.. Effects of organic modifiers on the size-controlled synthesis of hydroxyapatite nanorods[J]. Applied Surface Science, 2007, 253: 3311-3316

[16]

LiuY.-k., WangW.-z., ZhanY.-j., ZhengC.-l., WangG.-hou.. A simple route to hydroxyapatite nanofibers[J]. Materials Letters, 2002, 56: 496-501

[17]

KandoriK., HorigamiN., YasukawaA., IshikawaT.. Texture and formation mechanism of fibrous calcium hydroxyapatite particles prepared by decomposition of calcium-EDTA chelates[J]. Journal of the American Ceramic Society, 1997, 80: 1157-1164

[18]

ArceH., MonteroM. L., SaenzA., CastanoV. M.. Effect of pH and temperature on the formation of hydroxyapatite at low temperatures by decomposition of a Ca-EDTA complex[J]. Polyhedron, 2004, 23: 1897-1901

[19]

YanS.-j., ZhouZ.-h., ZhangF., YangS.-p., YangL.-z., YuX.-bin.. Effect of anionic PAMAM with amido groups starburst dendrimers on the crystallization of Ca10(PO4)6(OH)2 by hydrothermal method[J]. Materials Chemistry and Physics, 2006, 99: 164-169

[20]

WangY.-j., ChenJ.-d., WeiK., ZhangS.-h., WangX.-dong.. Surfactant-assisted synthesis of hydroxyapatite particles[J]. Materials Letters, 2006, 60: 3227-3231

[21]

WierzbickiA., CheungH. S.. Molecular modeling of inhibition of hydroxyapatite by phospho-citrate[J]. Journal of Molecular Struc-Theochem, 2000, 529: 73-82

[22]

KandoriK., TsuyamaS., TanakaH., IshikawaT.. Protein adsorption characteristics of calcium hydroxyapatites modified with pyrophosphoric acids[J]. Colloid and Surface Biointerface, 2007, 58: 98-104

[23]

KandoriK., OdaS., TsuyamaS.. Effects of pyrophosphate ions on protein adsorption onto calcium hydroxyapatite[J]. Journal of Physical Chemistry B, 2008, 112: 2542-2547

[24]

FilgueirasM. R. T., MkhontoD., De LeeuwN. H.. Computer simulations of the adsorption of citric acid at hydroxyapatite surfaces[J]. Journal of Crystal Growth, 2006, 294: 60-68

[25]

ZhangH.-q., WangY.-f., YanY.-h., LiS.-pu.. Precipitation of biocompatible hydroxyapatite whiskers from moderately acid solution[J]. Ceramics International, 2003, 29: 413-418

[26]

AizawaM., UenoH., ItataniK., OkadaI.. Syntheses of calcium-deficient apatite fibres by a homogeneous precipitation method and their characterizations[J]. Journal of the European Ceramic Society, 2006, 26: 501-507

[27]

KanzakiN., OnumaK., TrebouxG., ItoA.. Dissolution kinetics of dicalcium-phosphate dihydrate under pseudophysiological conditions[J]. Journal of Crystal Growth, 2002, 235: 465-470

[28]

WalshD., KingstonJ. L., HeywoodB. R., MannS.. Influence of monosaccharides and related molecules on the morphology of hydroxyapatite[J]. Journal of Crystal Growth, 1993, 133: 1-12

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/