Iron(II) tetrasulfophthalocyanine mimetic enzymatic synthesis of conducting polyaniline in micellar system

Xing Hu , Hui Liu , Guo-lin Zou

Journal of Central South University ›› 2009, Vol. 16 ›› Issue (5) : 743 -748.

PDF
Journal of Central South University ›› 2009, Vol. 16 ›› Issue (5) : 743 -748. DOI: 10.1007/s11771-009-0123-2
Article

Iron(II) tetrasulfophthalocyanine mimetic enzymatic synthesis of conducting polyaniline in micellar system

Author information +
History +
PDF

Abstract

Iron(II) tetrasulfophthalocyanine (FeTSPc), as a novel mimetic enzyme of peroxidase, was used in the synthesis of a conducting polyaniline (PANI)/sodium dodecylsulfate (SDS) complex in SDS aqueous micellar solutions. The effects of pH, concentrations of aniline, SDS and H2O2, and reaction time on polymerization of aniline were studied in this case as shown by UV-Vis absorption spectroscopy. The results show that a wide range of pH (0.5–4.0) is required to produce the conducting PANI, and the optimal pH is 1.0 in SDS micelle. The optimal concentrations of aniline, SDS and H2O2 in feed, and reaction time in this case for the production of conducting PANI are respectively 10 mmol/L, 10 mmol/L, 25 mmol/L, and 15 h. FT-IR spectrum, elemental analysis, conductivity, cyclic voltammetry and thermogravimetric analysis confirm the thermal stability and electroactive form of PANI.

Keywords

iron(II) tetrasulfophthalocyanine / polyaniline / mimetic enzyme / conductivity / micelle

Cite this article

Download citation ▾
Xing Hu, Hui Liu, Guo-lin Zou. Iron(II) tetrasulfophthalocyanine mimetic enzymatic synthesis of conducting polyaniline in micellar system. Journal of Central South University, 2009, 16(5): 743-748 DOI:10.1007/s11771-009-0123-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AkkaraJ. A., SencealK. J., KaplanD. L.. Synthesis and characterization of polymers produced by horseradish peroxodase in dioxane [J]. Journal of Polymer Science: Polymer Chemistry Edition, 1991, 29(3): 1561-1568

[2]

SakharovI. Y., VorobievA. K., Castillo LeonJ. J.. Synthesis of polyelectrolyte complexes of polyaniline and sulfonated polystyrene by palm tree peroxidase [J]. Enzyme and Microbial Technology, 2003, 33(9): 661-667

[3]

KaramyshevA. V., ShleevS. V., KorolevaO. V., YaropolovA. I., SakharovI. Y.. Laccase-catalyzed synthesis of conducting polyaniline [J]. Enzyme and Microbial Technology, 2003, 33(9): 556-564

[4]

SakharovI. Y., OuporovI. V., VorobievA. K., RoigM. G., PletjushkinaO. Y.. Modeling and characterization of polyelectrolyte complex of polyaniline and sulfonated polystyrene produced by palm tree peroxidase [J]. Synthetic Metals, 2004, 142(1/3): 127-135

[5]

HuX., ZhangY. Y., TangK., ZouG. L.. Hemoglobin-biocatalysts synthesis of a conducting molecular complex of polyaniline and sulfonated polystyrene [J]. Synthetic Metals, 2005, 150(1): 1-7

[6]

HuX., ZhangY. Y., LiC. H., LiuH. H., ZouG. L.. Synthesis of a conducting polyaniline by hemoglobin as biocatalyst [J]. Acta Chimica Sinica, 2005, 63(1): 33-38

[7]

HuX., ShuX. S., LiX. W., LiuS. G., ZhangY. Y., ZouG. L.. Hemoglobin-biocatalyzed synthesis of conducting polyaniline in micellar solutions [J]. Enzyme and Microbial Technology, 2006, 38(5): 675-682

[8]

SaitoY., MifuneM., NakashimaS., OdoJ.. Determination of hydrogen peroxide with N,N-diethylaniline and 4-aminoantipyrine by use of an anion-exchange resin modified with manganese-tetrakis (sulphophenyl) porphine, as a substitute for peroxidase [J]. Talanta, 1987, 34: 667-669

[9]

GrootboomN., NyokongT. J.. Iron perchlorophthalocyanine and tetrasulfophthalocyanine catalyzed oxidation of cyclohexane using hydrogen peroxide, chloroperoxybenzonic acid and tert-butylhydroperoxide as oxidants [J]. Journal of Molecular Catalysis A: Chemical, 2002, 179: 113-123

[10]

HanasakiN., MatsudaM., TajimaH., NaitoT., InabeT.. Torque study of TPP[Fe(Pc)(CN)2]2 [J]. Synthetic Metals, 2003, 137: 1227-1228

[11]

EllisS., KozhevnikovI. V.. Homogeneous oxidation of methyl isobutyrate with oxygen catalysed by metal complexes: polyoxometalates versus metalloporphyrins and metallophthalocyanines [J]. Journal of Molecular Catalysis A: Chemical, 2002, 187: 227-235

[12]

MilosM.. A comparative study of biomimetic oxidation of oregano essential oil by H2O2 or KHSO5 catalyzed by Fe(III) mesotetraphenylporphyrin or Fe(III) phthalocyianine [J]. Applied Catalysis A: General, 2001, 216: 157-161

[13]

HaberJ., PaminK., PoltowiczJ.. Cationic metalloporphyrins and other macrocyclic compounds in zeolite matrix as catalysts for oxidation with dioxygen [J]. Journal of Molecular Catalysis A: Chemical, 2004, 224: 153-159

[14]

LiuW., CholliA. L., NagarajanR., KumarJ., TripathyS. K., SenecalK. J., BrunoF. F., SamuelsonL. A.. The role of template in the enzymatic synthesis of conducting polyaniline [J]. Journal of American Chemical Society, 1999, 121: 11345-11355

[15]

KimB. J., OhS. G., HanM. G., ImS. S.. Preparation of polyaniline nanoparticles in micellar solutions as polymerization medium [J]. Langmuir, 2000, 16: 5841-5845

[16]

WeberJ. H., BuschD. H.. Complexes derived from strong field ligands XIX magnetic properties of transition metal derivatives of 4,4′,4″,4‴-tetrasulfo-phthalocyanine [J]. Inorganic Chemistry, 1965, 4(4): 469-471

[17]

WudlF., AngusR. O., LuF. L., AllemandP. M., VachonD. J., NowakM., LiuZ. X., HeegerA. J.. Poly-phenyleneamineimine: Synthesis and comparison to polyaniline [J]. Journal of American Chemical Society, 1987, 109: 3677-3684

[18]

LiuW., KumarJ., TripathyS., SamuelsonL. A.. Enzymatic synthesis of conducting polyaniline in micelle solutions [J]. Langmuir, 2002, 18: 9696-9704

[19]

LiuW., KumarJ., TripathyS. K., SenecalK. J., SamuelsonL. A.. Enzymatically synthesized conducting polyaniline [J]. Journal of American Chemical Society, 1999, 121: 71-78

[20]

PremachandranR. S., BanerjeeS., WuX. K., JohnV. T., McphersonG. L., AkkaraJ. A., AyyagariM., KaplanD. L.. Enzymatic synthesis of fluorescent naphthol-based polymers [J]. Macromolecules, 1996, 29: 6452-6460

[21]

SamuelsonL. A., AnagnostopoulosA., AlvaK. S., KumarJ., TripathyS. K.. Biologically derived conducting and water soluble polyaniline [J]. Macromolecules, 1998, 31: 4376-4378

[22]

YueJ., WangZ. H., CromackK. R., EpsteinA. J., MacdiarmidA. G.. Effect of sulfonic acid group on polyaniline backbone [J]. Journal of American Chemical Society, 1991, 113: 2665-2671

[23]

KimB. J., OhS. G., HanM. G., ImS. S.. Synthesis and characterization of polyaniline nanoparticles in SDS micellar solutions [J]. Synthetic Metals, 2001, 122: 297-304

[24]

BerryB. C., ShaikhA. U., ViswanathanT.. Corrosion prevention of cold rolled steel using water dispersible lignosulfonic acid-doped polyaniline [J]. Polymer Preparation, 2000, 41: 1739-1740

[25]

RoyS., FortierJ. M., NagarajanR., TripathyS. K., KumarJ., SamuelsonL. A., BrunoF. F.. Biomimetic synthesis of a water soluble conducting molecular complex of polyaniline and lignosulfonate [J]. Biomacromolecules, 2002, 3: 937-941

[26]

VarelaH., De Albuquerque MaranhaoS. L., MelloR. M. Q., TicianelliE. A., ToressiR. M.. Comparisons of charge compensation process in aqueous media of polyaniline and self-doped polyanilines [J]. Synthetic Metals, 2001, 122: 321-327

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/