Adsorption of Pb2+ on macroporous weak acid adsorbent resin from aqueous solutions: Batch and column studies

Chun-hua Xiong , Yu-jie Feng , Cai-ping Yao

Journal of Central South University ›› 2009, Vol. 16 ›› Issue (4) : 569 -574.

PDF
Journal of Central South University ›› 2009, Vol. 16 ›› Issue (4) : 569 -574. DOI: 10.1007/s11771-009-0095-2
Article

Adsorption of Pb2+ on macroporous weak acid adsorbent resin from aqueous solutions: Batch and column studies

Author information +
History +
PDF

Abstract

The adsorption properties of a novel macroporous weak acid resin (D152) for Pb2+ were investigated with chemical methods. The optimal adsorption condition of D152 resin for Pb2+ is at pH 6.00 in HAc-NaAc medium. The statically saturated adsorption capacity is 527 mg/g at 298 K. Pb2+ adsorbed on D152 resin can be eluted with 0.05 mol/L HCl quantitatively. The adsorption rate constants determined under various temperatures are k288 K=2.22×10−5 st-1, k298 K=2.51×10−5 s−1, and k308 K= 2.95×10−5 s−1, respectively. The apparent activation energy, Ea is 10.5 kJ/mol, and the adsorption parameters of thermodynamics are ΔHΘ=13.3 kJ/mol, ΔSΘ=119 J/(mol·K), and ΔGΘ 298 K =−22.2 kJ/mol, respectively. The adsorption behavior of D152 resin for Pb2+ follows Langmuir model.

Keywords

Pb2+ / macroporous weak acid resin / adsorption / thermodynamics

Cite this article

Download citation ▾
Chun-hua Xiong, Yu-jie Feng, Cai-ping Yao. Adsorption of Pb2+ on macroporous weak acid adsorbent resin from aqueous solutions: Batch and column studies. Journal of Central South University, 2009, 16(4): 569-574 DOI:10.1007/s11771-009-0095-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

PaulinoA. T., GuilhermeM. R., ReisA. V., TambourgiE. B., NozakiJ., MunizE. C.. Capacity of adsorption of Pb2+ and Ni2+ from aqueous solutions by chitosan produced from silkworm chrysalides in different degrees of deacetylation [J]. Journal of Hazardous Materials, 2007, 147(1/2): 139-147

[2]

MauchauffeeS., MeuxE.. Use of sodium decanoate for selective precipitation of metals contained in industrial wastewater [J]. Chemosphere, 2007, 69(5): 763-768

[3]

GalanB., CastanedaD., OrtizI.. Integration of ion exchange and non-dispersive solvent extraction processes for the separation and concentration of Cr(VI) from ground waters [J]. Journal of Hazardous Materials, 2008, 152(2): 795-804

[4]

MelitaL., PopescuM.. Removal of Cr(VI) from industrial water effluents and surface water using activated composite membranes [J]. Journal of Membrane Science, 2008, 312(1/2): 157-162

[5]

BashaC. A., BhadrinarayanaN. S., AnantharamanN., Meera Sheriffa BegumK. M.. Heavy metal removal from copper smelting effluent using electrochemical cylindrical flow reactor [J]. Journal of Hazardous Materials, 2008, 152(1): 71-78

[6]

GanT., WuK.-bing.. Sorption of Pb(II) using hydrogen peroxide functionalized activated carbon [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 330(2/3): 91-95

[7]

Rangel-MendezJ. R., Monroy-ZepedaR., Leyva-RamosE., Diaz-FloresP. E., ShiraiK.. Chitosan selectivity for removing cadmium (II), copper (II), and lead (II) from aqueous phase: pH and organic matter effect [J]. Journal of Hazardous Materials, 2009, 162(1): 503-511

[8]

ChaariI., FakhfakhE., ChakrounS., BouiidJ., BoujelbenN., FekiM., RochaF., JamoussiF.. Lead removal from aqueous solutions by a tunisian smectitic clay [J]. Journal of Hazardous Materials, 2008, 156(1/3): 545-551

[9]

RajeshN., JalanR. K., HotwanyP.. Solid phase extraction of chromium(VI) from aqueous solutions by adsorption of its diphenylcarbazide complex on an Amberlite XAD-4 resin column [J]. Journal of Hazardous Materials, 2008, 150(3): 723-727

[10]

XiongC.-h., YaoC.-ping.. Sorption behavior of weak acid resin (D113) for zinc [J]. The Chinese Journal of Nonferrous Metals, 2008, 18(4): 745-749

[11]

XiongC.-h., YaoC.-p., WangY.-jiang.. Sorption behaviour and mechanism of ytterbium(III) on imino-diacetic acid resin [J]. Hydrometallurgy, 2006, 82(3/4): 190-194

[12]

JiC.-n., QuR.-j., WangC.-h., ChenH., SunC.-m., XuQ., SunY.-z., WeiC.. A chelating resin with bis[2-(2-benzothiazolylthioethyl) sulfoxide]: Synthesis, characterization and properties for the removal of trace heavy metal ion in water samples [J]. Talanta, 2007, 73(2): 195-201

[13]

DoniaA. M., AtiaA. A., HenieshA. M.. Efficient removal of Hg(II) using magnetic chelating resin derived from copolymerization of bisthiourea/thiourea/glutaraldehyde [J]. Separation and Purification Technology, 2008, 60(1): 46-53

[14]

XiongC.-h., YaoC.-p., WuX.-mei.. Adsorption of rhenium(VII) on 4-amino-1, 2, 4-triazole resin [J]. Hydrometallurgy, 2008, 90(2/4): 221-226

[15]

ShuZ.-n., XiongC.-h., WangX.. Adsorption behavior and mechanism of amino methylene phosphonic acid resin for Ag(I) [J]. Transactions of Nonferrous Metals Society of China, 2006, 16(3): 700-704

[16]

GodeF., PehlivanE.. Removal of chromium(III) from aqueous solutions using Lewatit S 100: The effect of pH, time, metal concentration and temperature [J]. Journal of Hazardous Materials, 2006, 136(2): 330-337

[17]

ChenY.-g., ZhangK.-n., ZouY.-s., DengF.-yue.. Removal of Pb2+ and Cd2+ by adsorption on clay-solidified grouting curtain for waste landfills [J]. Journal of Central South University of Technology, 2006, 13(2): 166-170

[18]

GuptaV. K., GuptaM., SharmaS.. Process development for the removal of lead and chromium from aqueous solutions using red mud-An aluminium industry waste [J]. Water Research, 2001, 35(5): 1125-1134

[19]

ColemanN. J., LeeW. E., SlipperI. J.. Interactions of aqueous Cu2+, Zn2+ and Pb2+ ions with crushed concrete fines [J]. Journal of Hazardous Materials, 2005, 121(1/3): 203-213

[20]

HoY. S., MckayG.. The sorption of lead(II) ions on peat [J]. Water Research, 1999, 33(2): 578-584

[21]

IssabayeyaG., ArouaM. K., SulaimanN. M. N.. Removal of lead from aqueous solutions on palm shell activated carbon [J]. Bioresource Technology, 2006, 97(18): 2350-2355

[22]

Abdel-HalimS. H., ShehataA. M. A., El-ShahatM. F.. Removal of lead ions from industrial waste water by different types of natural materials [J]. Water Research, 2003, 37(7): 1678-1683

[23]

MemonS. Q., HasanyS. M., BhangerM. I., KhuhawarM. Y.. Enrichment of Pb(II) ions using phthalic acid functionalized XAD-16 resin as a sorbent [J]. Journal of Colloid and Interface Science, 2005, 291(1): 84-91

[24]

YurtseverM., Ayhan SengilI.. Biosorption of Pb(II) ions by modified quebracho tannin resin [J]. Journal of Hazardous Materials, 2009, 163(1): 58-64

[25]

XiongC.-h., YaoC.-ping.. Adsorption behavior of gel-type weak acid resin (110-H) for Pb2+ [J]. Transactions of Nonferrous Metals Society of China, 2008, 18(5): 1290-1294

[26]

ZhangS.-q., HouW.-guo.. Adsorption behavior of Pb2+ on montmorillonite [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 320(1/3): 92-97

[27]

El-SofanyE. A.. Removal of lanthanum and gadolinium from nitrate medium using Aliquat-336 impregnated onto Amberlite XAD-4 [J]. Journal of Hazardous Materials, 2008, 153(3): 948-954

[28]

WeiJ.-f., WangZ.-p., ZhangJ., WuY.-y., ZhangZ.-p., XiongC.-hua.. The preparation and the application of grafted polytetrafluoroethylene fiber as a cation exchanger for adsorption of heavy metals [J]. Reactive and Functional polymers, 2005, 65(1/2): 127-134

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/