Alkaline treatment kinetics of calcium phosphate by piezoelectric quartz crystal impedance

Li-ping Zeng , De-liang He , Chao Xu , Sheng-lian Luo

Journal of Central South University ›› 2009, Vol. 16 ›› Issue (4) : 558 -562.

PDF
Journal of Central South University ›› 2009, Vol. 16 ›› Issue (4) : 558 -562. DOI: 10.1007/s11771-009-0093-4
Article

Alkaline treatment kinetics of calcium phosphate by piezoelectric quartz crystal impedance

Author information +
History +
PDF

Abstract

Calcium phosphate film was prepared by electrochemical deposition technology. Subsequently, the alkaline treatment process of calcium phosphate film in 0.1 mol/L NaOH solution was monitored on real time by the piezoelectric quartz crystal impedance (PQCI) technique. The variations of morphology and composition for the alkaline treatment products were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) and X-ray diffraction (XRD), respectively. The dynamic variations of calcium phosphate can be characterized by the change of equivalent circuit parameters. The results show that the forming process of hydroxyapatite (HA) is composed of three stages: (1) acidic calcium phosphate dissolution; (2) phase transformation; and (3) HA formation. Furthermore, the correlative kinetic equations and parameters are obtained by fitting the static capacitance (Cs)—time curves.

Keywords

hydroxyapatite / calcium phosphate / piezoelectric quartz crystal impedance / alkaline treatment / kinetics

Cite this article

Download citation ▾
Li-ping Zeng, De-liang He, Chao Xu, Sheng-lian Luo. Alkaline treatment kinetics of calcium phosphate by piezoelectric quartz crystal impedance. Journal of Central South University, 2009, 16(4): 558-562 DOI:10.1007/s11771-009-0093-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DarimontG. L., ClootsR., HeinenE., SeidelL., LegrandR.. In vivo behavior of hydroxyapatite coatings on titanium implants: A quantitative study in the rabbit [J]. Biomaterials, 2002, 23(12): 2569-2575

[2]

YoshinariM., OdaY., InoueT., MatsuzakaK., ShimonoM.. Bone response to calcium phosphate-coated and bisphosphonate-immobilized titanium implants [J]. Biomaterials, 2002, 23(14): 2879-2885

[3]

ZhaoZ.-w., ZhangG., LiH.-gui.. Preparation of calcium phosphate coating on pure titanium substrate by electrodepsition method [J]. Journal of Central South University of Technology, 2004, 11(2): 147-151

[4]

LiuD. M., ChouH. M., WuJ. D., TungM. S.. Hydroxyapatite formation in a thermal process [J]. Mater Chem Phys, 1994, 37(1): 39-44

[5]

HsuY. S., ChangE., LiuH. S.. Hydrothermally-grow mometite(CaHPO4) on hydroxyapaptite [J]. Ceramics International, 1998, 24(4): 249-254

[6]

PramanikS., KumarA., RaiK. N., GargA.. Development of high strength hydroxyapatite by solid-state-sintering process [J]. Ceramics International, 2007, 33(3): 419-426

[7]

PattanayakD. K., DashR., PrasadR. C., RaoB. T., MohanT. R.. Synthesis and sintered properties evaluation of calcium phosphate ceramics [J]. Material Science and Engineering, 2007, C27(4): 684-690

[8]

ZouJ.-p., RuanJ.-m., HuangB.-y., LiuJ.-b., ZhouX.-xia.. Physico-chemical properties and microstructure of hydroxyapatite-316L stainless steel biomaterials [J]. Journal of Central South University of Technology, 2004, 11(2): 113-118

[9]

SilvaM. H., LimaJ. H. C., SoaresG. A., AndradeM. H., BestS. M., GibsonI. R.. Transformation of monetite to hydroxyapatite in bioactive coatings on titanium [J]. Surface and Coatings Technology, 2001, 137(2/3): 270-276

[10]

ShihW. J., ChenY. H., WangS. H., LiW. L., HouM. H., WangM. C.. Effect of NaOH(aq) treatment on the phase transformation and morphology of calcium phosphate deposited by an electrolytic method [J]. Crystal Growth, 2005, 285(4): 633-641

[11]

LiuC.-s., HuangY., ShenW., CuiJ.-hua.. Kinetics of hydroxyapatite precipitation at pH 10 to 11 [J]. Biomaterial, 2001, 22(4): 301-306

[12]

SauerbreyG.. The use of quartz oscillators for weighting thin layers and for microweighing [J]. Physical, 1959, 155(1): 206-212

[13]

ButtryD. A., BardA. J.Electroanalytical chemistry: A series of advances [M], 1991, New York, Marcel Dekker

[14]

SatoT., SerizawaT., OkahataY.. Binding of influenza A virus to monosialogangli-oside (GM3) reconstituted in glucosylceramide and sphingomyelin membranes [J]. Biochimmica et Biophysical Acta (BBA)—Biomembranes, 1996, 1285(1): 14-20

[15]

MuramatsuH., TamiyaE., KarubeI.. Computation of equivalent circuit parameters of quartz crystals in contact with liquids and study of liquid properties [J]. Analytical Chemistry, 1988, 60(19): 2142-2146

[16]

BaileyR. T., HoltC.Calcified tissue [M], 1989, Boca Raton, Florida, CRC Press: 93

[17]

BerryE. E., BaddielC. B.. The infra-red spectrum of dicalcium phosphate dihydrate (brushite) [J]. Spectrochimica Acta, 1967, 23A(7): 2089-2097

[18]

WaltersM. A., LeungY. C., BlumenthalN. C., KonskerK. A., LegerosR. Z.. A Raman and infrared spectroscopic in investigation of biological hydroxyapatite [J]. Journal of Inorganic Biochemistry, 1990, 39(3): 193-200

[19]

DasarathyH., RileyC., CobleH. D.. Analysis of apatite deposits on substrates [J]. Biomedical Materials Research, 1993, 27(4): 477-482

[20]

GadaletaS. J., PaschalisE. P., BettsF., MendelsohnR., BoskeyA. L.. Fourier transform infrared spectroscopy of the solution-mediated conversion of amorphous calcium phosphate to hydroxyapatite: New correlation between X-ray diffraction and infrared data [J]. Calcif Tissue Int, 1996, 58(1): 9-16

AI Summary AI Mindmap
PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/