Hybrid supercapacitor based on polyaniline doped with lithium salt and activated carbon electrodes

Jing Fang , Mu Cui , Hai Lu , Zhi-an Zhang , Yan-qing Lai , Jie Li

Journal of Central South University ›› 2009, Vol. 16 ›› Issue (3) : 434 -439.

PDF
Journal of Central South University ›› 2009, Vol. 16 ›› Issue (3) : 434 -439. DOI: 10.1007/s11771-009-0073-8
Article

Hybrid supercapacitor based on polyaniline doped with lithium salt and activated carbon electrodes

Author information +
History +
PDF

Abstract

Polyaniline(PANI) nanofiber was synthesized by interfacial polymerization utilizing the interface between HCl and CCl4. The hybrid type supercapacitors (PLi/C) based on Li-doping polyaniline and activated carbon electrode were fabricated and compared with the redox type capacitors (PLi/PLi) based on two uniformly Li-doping polyaniline electrodes. The electrochemical performances of the two types of supercapacitors were characterized in non-aqueous electrolyte. PLi/C supercapacitors have a wider effective energy storage potential range and a higher upper potential. At the same time, the PLi/C supercapacitor exhibits a specific capacity of 120.93 F/g at initial discharge and retains 80% after 500 cycles. The ohmic internal resistance (RES) of PLi/C supercapacitor is 5.0 Ω, which is smaller than that of PLi/PLi capacitor (5.5 Ω). Moreover, it can be seen that Et4NBF4 organic solution is more suitable for using as organic electrolyte of PLi/C capacitor compared with organic solution containing LiPF6.

Keywords

polyaniline / Li salt / hybrid supercapacitor / conducting polymer / doping

Cite this article

Download citation ▾
Jing Fang, Mu Cui, Hai Lu, Zhi-an Zhang, Yan-qing Lai, Jie Li. Hybrid supercapacitor based on polyaniline doped with lithium salt and activated carbon electrodes. Journal of Central South University, 2009, 16(3): 434-439 DOI:10.1007/s11771-009-0073-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KötzR., CarlenM.. Principles and applications of electrochemical capacitors [J]. Electrochimica Acta, 2000, 45(15/16): 2483-2498

[2]

LewandowskiA., GalinskiM.. Practical and theoretical limits for electrochemical double-layer capacitors [J]. Journal of Power Source, 2007, 173(2): 822-828

[3]

Vix-GuterlC., SaadallahS., JurewiczK., FrackowiakE., RedaM., ParmentierJ., PatarinJ., BeguinF.. Supercapacitor electrodes from new ordered porous carbon materials obtained by a templating procedure [J]. Materials Science and Engineering B, 2004, B108(1/2): 148-155

[4]

ThomasE. R., DemisaH. J., ZhuZ. H., LuG. Q.. Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors [J]. Electrochemistry Communications, 2008, 10(10): 1594-1597

[5]

PaymanA., PierfedericiS., Meibody-TabarF.. Energy control of supercapacitor/fuel cell hybrid power source [J]. Energy Conversion and Management, 2008, 49(2): 1637-1644

[6]

TianY.-m., SongY., TangZ.-h., GuoQ.-g., LiuL.. Influence of high temperature treatment of porous carbon on the electrochemical performance in supercapacitor [J]. Journal of Power Sources, 2008, 184(2): 675-681

[7]

LaiY.-q., LiJ., SongH.-s., ZhangZ.-a., LiJ., LiuY.-xiang.. Preparation of activated carbons from mesophase pitch and their electrochemical properties [J]. Journal of Central South University of Technology, 2007, 14(5): 601-606

[8]

ZhouS.-y., WangZ.-x., GuoH.-j., PengW.-jie.. Effect of activated carbon and electrolyte on properties of supercapacitor [J]. Transactions of Nonferrous Metals Society of China, 2007, 17(6): 1328-1333

[9]

ParkJ. H., KoJ. M., ParkO. O., KimD. W.. Capacitance properties of graphite/polypyrrole composite electrode prepared by chemical polymerization of polpyrrole on graphite fiber [J]. Journal of Power Source, 2002, 105(1): 20-25

[10]

LaforgueA., SimonP., SarrazinC., FauvarqueJ.. Polythiophene-based supercapacitors [J]. Journal of Power Sources, 1999, 80(1/2): 142-148

[11]

RyuK. S., HongY. S., ParkY. J., WuX., KimK., LeeY., ChangS. H., LeeS. J.. Polyaniline doped with dimethylsulfate as a polymer electrode for all solid-state power source system [J]. Solid State Ionics, 2004, 175(1/4): 759-763

[12]

KoJ. M., SongR. Y., YuH. J., YoonJ. W., MinB. G., KimD. W.. Capacitive performance of the composite electrode consisted of polyaniline and activated carbons powder in a solid-like acid gel electrolyte [J]. Electrochimica Acta, 2004, 50(2/3): 873-876

[13]

PrasadK. R., MunichandraiahN.. Fabrication and evaluation of 450 F electrochemical redox supercapacitors using inexpensive and high-performance, polyaniline coated, stainless-steel electrodes [J]. Journal of Power Source, 2002, 112(2): 443-451

[14]

RyuK. S., KimK. M., ParkN. G., ParkY. J., ChangS. H.. Symmetric redox supercapacitor with conducting polyaniline electrodes [J]. Journal of Power Source, 2002, 103(2): 305-309

[15]

RyuK. S., KimK. M., ParkY. J., ParkN. G., KangM. G., ChangS. H.. Redox supercapacitor using polyaniline doped with Li salt as electrode [J]. Solid State Ionics, 2002, 152/153: 861-866

[16]

ParkJ. H., ParkO. O.. Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes [J]. Journal of Power Source, 2002, 111(1): 185-190

[17]

ChenW. C., WenT. C.. Electrochemical and capacitance properties of polyaniline-implanted porous carbon electrode for supercapacitors [J]. Journal of Power Source, 2003, 117(1/2): 273-282

[18]

KhomenkoV., FrakowiakE., BeguinF.. Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations [J]. Electrochimica Acta, 2005, 50(12): 2499-2506

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/