Equilibrium position of misfit dislocation dipole and critical parameters of buried strained nanoscale inhomogeneity in system of viscoelastic matrix

You-wen Liu , Chao Xie , Qi-hong Fang

Journal of Central South University ›› 2010, Vol. 15 ›› Issue (Suppl 1) : 550 -554.

PDF
Journal of Central South University ›› 2010, Vol. 15 ›› Issue (Suppl 1) : 550 -554. DOI: 10.1007/s11771-008-0419-7
Article

Equilibrium position of misfit dislocation dipole and critical parameters of buried strained nanoscale inhomogeneity in system of viscoelastic matrix

Author information +
History +
PDF

Abstract

A theoretical model was suggested which describes the generation of the misfit dislocation dipole in the system of the viscoelastic matrix containing a circular stiff nanoscale inhomogeneity. The critical condition of misfit dislocation dipole and the solution of equilibrium position were given. The influence of the ratio of shear modulus, the misfit strain and viscosity on the equilibrium of the dislocation and critical parameter of inhomogeneity was investigated. The result shows that the equilibrium position de increases with the increase of the ratio of original shear modulus and the effect decreases with the increase of viscosity of matrix. Along with the increase of viscosity of matrix, de first increases and then decreases and possesses maximum value when t=0.3τ and tends to a stable value when t⩾1.0z. Along with the increase of viscosity of matrix, Rc first decreases and then increases and possesses minimum value when t=0.3τ and tends to a stable value when t⩾1.0τ.

Keywords

nanoscale inhomogeneity / viscoelastic / misfit strain / misfit dislocation dipole / critical condition

Cite this article

Download citation ▾
You-wen Liu, Chao Xie, Qi-hong Fang. Equilibrium position of misfit dislocation dipole and critical parameters of buried strained nanoscale inhomogeneity in system of viscoelastic matrix. Journal of Central South University, 2010, 15(Suppl 1): 550-554 DOI:10.1007/s11771-008-0419-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LinkS., Ei-SayedM. A.. Optical properties and ultrafast dynamics of metallic nanocrystals [J]. Annu Rev Phys Chem, 2003, 54: 331-336

[2]

ZhangT. Y., SuY. J.. The critical thickness of an epilayer deposited on a semiconductor-on-insulator compliant substrate [J]. Appl Phys Lett, 1999, 74: 1689

[3]

AifantisK. E., KolesnikovaA. L., RomanovA. E.. Nucleation of misfit dislocations and plastic deformation in core/shell nanowires [J]. Philos Mag, 2007, 87(30): 4731-4757

[4]

KassnerM. E., Nemat-NasserS., SuoZ., BaoG.. New directions in mechanics [J]. Mech Mater, 2005, 37: 231-259

[5]

FreundL. B., GoslingT. J.. Critical thickness condition for growth of strained quantum wires in substrate V-grooves [J]. Appl Phys Lett, 1995, 66: 2822

[6]

ColinJ., GrihleJ.. Dipole of misfit dislocations in axially symmetric structures [J]. Philos Mag Lett, 2002, 82(3): 125-132

[7]

GutkinM. Y., Ovid’koI. A., SheinermanA. G.. Misfit dislocations in composites with nanowires [J]. J Phys: Condens Matter, 2003, 15: 3539-3554

[8]

Ovid’koI. A., SheinermanA. G.. Nanoparticles as dislocation sources in nanocomposites [J]. J Phys: Condens Matter, 2006, 18: L225

[9]

WuX., WeatherlyG. C.. The first stage of stress relaxation in tensile strained In1−xGaxAs1−yPy films [J]. Philos Mag A, 2001, 81(6): 1489-1506

[10]

FangQ. H., LiuY. W., ChenJ. H.. Misfit dislocation dipoles and critical parameters of buried strained nanoscale inhomogeneity [J]. Appl Phys Lett, 2008, 92: 1

[11]

ZhangC.-yuan.Viscoelastic fracture mechanics [M], 1994, Wuhan, Huazhong University of Science and Technology Press

[12]

GutkinM. Y., Ovid’koI. A., SheinermanA. G.. Misfit dislocations in composites with nanowires [J]. J Phys: Condens Matter, 2000, 12: 5391

[13]

HirthJ. P., LotheJ.Theory of dislocations[M], 1982, New York, Wiley

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/