Rate dependent rheological stress-strain behavior of porous nanocrystalline materials

Hui Li , Jian-qiu Zhou

Journal of Central South University ›› 2010, Vol. 15 ›› Issue (Suppl 1) : 21 -24.

PDF
Journal of Central South University ›› 2010, Vol. 15 ›› Issue (Suppl 1) : 21 -24. DOI: 10.1007/s11771-008-0306-2
Article

Rate dependent rheological stress-strain behavior of porous nanocrystalline materials

Author information +
History +
PDF

Abstract

To completely understand the rate-dependent stress-strain behavior of the porous nanocrystalline materials, it is necessary to formulate a constitutive model that can reflect the complicated experimentally observed stress-strain relations of nanocrystalline materials. The nanocrystalline materials consisting grain interior and grain boundary are considered as viscoplastic and porous materials for the reasons that their mechanical deformation is commonly governed by both dislocation glide and diffusion, and pores commonly exist in the nanocrystalline materials. A constitutive law of the unified theory reflecting the stress-strain relations was established and verified by experimental data of bulk nanocrystalline Ni prepared by hydrogen direct current arc plasma evaporation method and hot compression. The effect of the evolution of porosity on stress-strain relations was taken into account to make that the predicted results can keep good agreements with the corresponding experimental results.

Keywords

stress-strain / porous / nanocrystalline materials / rate dependent / porosity

Cite this article

Download citation ▾
Hui Li, Jian-qiu Zhou. Rate dependent rheological stress-strain behavior of porous nanocrystalline materials. Journal of Central South University, 2010, 15(Suppl 1): 21-24 DOI:10.1007/s11771-008-0306-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GleiterH.. Nanocrystalline materials [J]. Progress in Materials Science, 1989, 33(4): 223-315

[2]

SuryanarayanaC.. Nanocrystalline materials [J]. International Materials Reviews, 1995, 40(2): 41-64

[3]

ChiangY. M.. Introduction and overview: Physical properties of nanostructured materials [J]. Journal of Electroceramics, 1997, 1(3): 205-209

[4]

SandersP. G., FougereG. E., ThompsonL. J., EastmanJ. A., WeertmanJ. R.. Improvements in the synthesis and compaction of nanocrystalline materials [J]. Nanostructed Materials, 1997, 8(3): 243-252

[5]

TellkampV. L., MelmedA., LaverniaE. J.. Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy [J]. Metallurgical and Materials Transactions A, 2001, 32(9): 2335-2343

[6]

ValievR. Z., IslamgalievR. K., AlexandrovI. V.. Bulk nanostructured materials from severe plastic deformation [J]. Progress in Materials Science, 2000, 45(2): 103-189

[7]

ErbU.. Electrodeposited nanocrystals: Synthesis, properties and industrial applications [J]. Nanostructured Materials, 1995, 6(5/8): 533-538

[8]

EbrahimiF., ZhaiQ., KongD.. Deformation and fracture of electrodeposited copper [J]. Scripta Materialia, 1998, 39(3): 315-321

[9]

WangY. M., WangK., PanD., LuK., HemkerK. J., MaE.. Microsample tensile testing of nanocrystalline copper [J]. Scripta Materialia, 2003, 48(12): 1581-1586

[10]

LuL., LiS. X., LuK.. An abnormal strain rate effect on tensile behavior in nanocrystalline copper [J]. Scripta Mater, 2001, 45(10): 1163-1169

[11]

KimH. S., BushM. B.. The effect of grain size and porosity on the elastic modulus of nanosrystalline materials [J]. Nanostructured Materials, 1999, 11(3): 361-367

[12]

JiangB., WengG. J.. A generalized self-consistent polycrystal model for the yield strength of nanocrystalline materials [J]. Journal of the Mechanics and Physics of Solids, 2004, 52(5): 1125-1149

[13]

JiangB., WengG. J.. A theory of compressive yield strength of nano-grained ceramics [J]. International Journal of Plasticity, 2004, 20(11): 2007-2026

[14]

LiJ., WengG. J.. A secant-viscosity composite model for the strain-rate sensitivity of nanocrystalline materials [J]. International Journal of Plasticity, 2007, 23(12): 2115-2133

[15]

KimH. S., EstrinY.. Phase mixture modeling of strain rate dependent mechanical behavior of nanostructured materials [J]. Acta Materialia, 2005, 53(3): 765-772

[16]

KimH. S., EstrinY., GutmanasE. Y., RheeC. K.. A constitutive model for densification of metal compacts: the case of copper [J]. Materials Science and Engineering A, 2001, 307(1/2): 67-73

[17]

KimH. S., BushM. B., EstrinY.. A phase mixture model of a particle reinforced composite with fine microstructure [J]. Materials Science & Engineering A, 2000, 276(1/2): 175-185

[18]

KimH. S., EstrinY., BushM. B.. Plastic deformation behaviour of fine-grained materials [J]. Acta Materialia, 2000, 48(2): 493-504

[19]

NiemannG. W., WeertmanJ. R., SiegelR. W.. Tensile strength and creep properties of nanocrystalline palladium [J]. Scripta Metall Mater, 1990, 24(1): 145-150

[20]

NiemannG. W., WeertmanJ. R., SiegelR. W.. Mechanical behavior of nanocrystalline Cu and Pd [J]. Materials Research Society, 1991, 6(5): 1012-1027

[21]

NiemannG. W., WeertmanJ. R., SiegelR. W.. Mechanical behavior nanocrystalline metals [J]. Nanostructured Materials, 1992, 1(2): 185-190

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/