Flame retardancy effect of surface-modified metal hydroxides on linear low density polyethylene

Xiang-jian Kong , Shu-mei Liu , Jian-qing Zhao

Journal of Central South University ›› 2008, Vol. 15 ›› Issue (6) : 779 -785.

PDF
Journal of Central South University ›› 2008, Vol. 15 ›› Issue (6) : 779 -785. DOI: 10.1007/s11771-008-0144-2
Article

Flame retardancy effect of surface-modified metal hydroxides on linear low density polyethylene

Author information +
History +
PDF

Abstract

Metal hydroxides (MAH) consisting of magnesium hydroxide and aluminum hydroxide with a mass ratio of 1:2 were surface-modified by γ-diethoxyphosphorous ester propyldiethoxymethylsilane, boric acid and diphenylsilanediol in xylene under dibutyl tin dilaurate catalyst at 140 °C. Phosphorus, silicon and boron elements covalently bonded to metal hydroxide particles were detected by X-ray photoelectron spectroscopy. The degradation behavior of the surface-modified MAH was characterized by thermogravimetric analysis. The results show that linear low density polyethylene (LLDPE) composite, filled with 50% (mass fraction) of MAH modified by 5.0% (mass fraction) of modifiers, passes the V-0 rating of UL-94 test and shows the limited oxygen index of 34%, and its heat release rate and average effective heat combustion in a cone calorimeter measurement decrease obviously; The mechanical properties of MAH can be improved by surface-modification. The uniform dispersion of particles and strong interfacial bonding between particles and matrix are obtained.

Keywords

metal hydroxides / linear low density polyethylene (LLDPE) / synergistic flame retardancy effect / surface-modification

Cite this article

Download citation ▾
Xiang-jian Kong, Shu-mei Liu, Jian-qing Zhao. Flame retardancy effect of surface-modified metal hydroxides on linear low density polyethylene. Journal of Central South University, 2008, 15(6): 779-785 DOI:10.1007/s11771-008-0144-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HameedT., HusseinI. A.. Melt miscibility and solid-state properties of metallocene LLDPE blends with HDPE: Influence of MM of LLDPE [J]. Journal of Central South University of Technology, 2007, 14(s1): 183-187

[2]

LiangR.-feng.. Processing flow behavior and modeling of polyethylene melts [J]. Journal of Central South University of Technology, 2007, 14(s1): 178-182

[3]

KierkegaardA., BjorklundJ., FridenU.. Identification of the flame retardant decabromodiphenyl ethane in the environment [J]. Environment Science & Technology, 2004, 38(12): 3247-3253

[4]

ThomsenC., LundanesE., BecherG.. Brominated flame retardants in archived serum samples from Norway: A study on temporal trends and the role of age [J]. Environment Science & Technology, 2002, 36(7): 1414-1418

[5]

LuS.-y., HamertonI.. Recent developments in the chemistry of halogen-free flame retardant polymers [J]. Progress in Polymer Science, 2002, 27(8): 1661-1712

[6]

FuM.-z., QuB.-j.. Synergistic flame retardant mechanism of fumed silica in ethylene-vinyl acetate/magnesium hydroxide blends [J]. Polymer Degradation and Stability, 2004, 85(1): 633-639

[7]

XiaoJ., WanY., DengH., LiJ., LiuY.-xiang.. Effects of drying method on preparation of nanometer α-Al2O3 [J]. Journal of Central South University of Technology, 2007, 14(3): 330-335

[8]

LiuG.-j., LiW.-f., PengJ.-h., DuJun.. Micro-yield behaviors of Al2O3-SiO2(sf)/Al-Si metal matrix composites [J]. Trans of Nonferrous Metal Soc China, 2007, 17(1): 307-312

[9]

HippiU., MattilaJ., KorhonenM., SeppalaJ.. Compatibilization of polyethylene/aluminum hydroxide (PE/ATH) and polyethylene/magnesium hydroxide (PE/MH) composites with functionalized polyethylenes [J]. Polymer, 2003, 44(4): 1193-1201

[10]

ZhangL., LiC.-z., ZhouQ.-l., ShaoWei.. Aluminum hydroxide filled ethylene vinyl acetate (EVA) composites: Effect of the interfacial compatibilizer and the particle size [J]. Journal of Materials Science, 2007, 42(12): 4227-4232

[11]

ChenX.-l., YuJ., GuoS.-yun.. Structure and properties of polypropylene composites filled with magnesium hydroxide [J]. Journal of Applied Polymer Science, 2006, 102(5): 4943-4951

[12]

NachtigallS. M. B., MiottoM., SchneiderE. E., MaulerR. S., ForteM. M. C.. Macromolecular coupling agents for flame retardant materials [J]. European Polymer Journal, 2006, 42(5): 990-999

[13]

PlentzR. S., MiottoM., SchneiderE. E., ForteM. S. M. C., MaulerR. S., NachtigallS. M. B.. Effect of a macromolecular coupling agent on the properties of aluminum hydroxide/PP composites [J]. Journal of Applied Polymer Science, 2006, 101(3): 1799-1805

[14]

LiZ.-h., LiB., ZhengZ.-qiao.. Special epoxy silicone adhesive for inertial confinement fusion experiment [J]. Journal of Central South University of Technology, 2007, 14(2): 153-156

[15]

LiauwC. M., LeesG. C., HurstS. J., RothonR. N., AliS.. Effect of silane-based filler surface treatment formulation on the interfacial properties of impact modified polypropylene/magnesium hydroxide composites [J]. Composites Part A, 1998, 29(9/10): 1313-1318

[16]

DuL.-c., QuB.-j., XuZ.-jin.. Flammability characteristics and synergistic effect of hydrotalcite with microencapsulated red phosphorus in halogen-free flame retardant EVA composite [J]. Polymer Degradation and Stability, 2006, 91(5): 995-1001

[17]

BraunU., SchartelB.. Flame retardant mechanisms of red phosphorus and magnesium hydroxide in high impact polystyrene [J]. Macromolecular Chemistry and Physics, 2004, 205(16): 2185-2196

[18]

BourbigotS., DuquesneS.. Fire retardant polymers: Recent developments and opportunities [J]. Journal of Materials Chemistry, 2007, 17(22): 2283-2300

[19]

CarpentierF., BourbigotS., LeB. M., DelobelR., FoulonM.. Charring of fire retarded ethylene vinyl acetate copolymer-magnesium hydroxide/zinc borate formulations [J]. Polymer Degradation and Stability, 2000, 69(1): 83-92

[20]

BourbigotS., DuqueseneS., SebihZ., SeguraS., DelobelR.. Synergistic aspects of the combination of magnesium hydroxide and ammonium polyphosphate in flame retardancy of ethylene-vinyl acetate copolymer [J]. Fire and Polymers IV: Materials and Concepts for Hazard Prevention ACS Symposium Series, 2006, 922: 200-212

[21]

OLIVER S, LUCKAS H J, SANDRA R. Method for producing phosphonate-modified silicones: US, 20070049718 [P]. 2007-03-01.

[22]

ZhangY., ZhangZ.-j., WangQ., XieZ.-min.. Synthesis of well-defined difunctional polydimethylsiloxane with an efficient dianionic initiator for ABA triblock copolymer [J]. Journal of Applied Polymer Science, 2007, 103(1): 153-159

[23]

ZuoJ.-d., LiR.-x., FengS.-h., LiG.-y., ZhaoJ.-qing.. Flame retardancy and its mechanism of polymers flame retarded by DBDPE/Sb2O3 [J]. Journal of Central South University of Technology, 2008, 15(1): 64-68

[24]

HeJ.-h., MaW.-s., TanS.-z., ZhaoJ.-qing.. Study on surface modification of ultrafine inorganic antibacterial particles [J]. Applied Surface Science, 2005, 241(3/4): 279-286

[25]

RuanY., YangM.-s., LiangT.-x., YanQ., LiuD.-s., JinR.-guang.. Effects of the reinforcement and toughening of acrylate resin/CaCO3 nanoparticles on rigid poly(vinyl chloride) [J]. Journal of Applied Polymer Science, 2007, 103(6): 3940-3949

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/