Preparation of LiFePO4 for lithium ion battery using Fe2P2O7 as precursor

Guo-rong Hu , Zheng-wei Xiao , Zhong-dong Peng , Ke Du , Xin-rong Deng

Journal of Central South University ›› 2008, Vol. 15 ›› Issue (4) : 531 -534.

PDF
Journal of Central South University ›› 2008, Vol. 15 ›› Issue (4) : 531 -534. DOI: 10.1007/s11771-008-0100-1
Article

Preparation of LiFePO4 for lithium ion battery using Fe2P2O7 as precursor

Author information +
History +
PDF

Abstract

In order to obtain a new precursor for LiFePO4, Fe2P2O7 with high purity was prepared through solid phase reaction at 650 °C using starting materials of FeC2O4 and NH4H2PO4 in an argon atmosphere. Using the as-prepared Fe2P2O7, Li2CO3 and glucose as raw materials, pure LiFePO4 and LiFePO4/C composite materials were respectively synthesized by solid state reaction at 700 °C in an argon atmosphere. X-ray diffractometry and scanning electron microscopy(SEM) were employed to characterize the as-prepared Fe2P2O7, LiFePO4 and LiFePO4/C. The as-prepared Fe2P2O7 crystallizes in the C

\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\bar 1$$\end{document}
space group and belongs to β-Fe2P2O7 for crystal phase. The particle size distribution of Fe2P2O7 observed by SEM is 0.4–3.0 μm. During the Li+ ion chemical intercalation, radical P2O74− disrupted into two PO43− ions in the presence of O2−, thus providing a feasible technique to dispose this poor dissolvable pyrophosphate. LiFePO4/C composite exhibits initial charge and discharge capacities of 154 and 132 mA·h/g, respectively.

Keywords

lithium ion battery / cathode material / preparation / precursor / LiFePO4 / Fe2P2O7

Cite this article

Download citation ▾
Guo-rong Hu, Zheng-wei Xiao, Zhong-dong Peng, Ke Du, Xin-rong Deng. Preparation of LiFePO4 for lithium ion battery using Fe2P2O7 as precursor. Journal of Central South University, 2008, 15(4): 531-534 DOI:10.1007/s11771-008-0100-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

PadhiA. K., NanjundaswamyK. S., MasquelierC., OkadaS., GoodenoughJ. B.. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates [J]. Journal of Electrochemical Society, 1997, 144(5): 1609-1613

[2]

ZhangB., LiX.-h., ZhuB.-quan.. Low temperature synthesis and electrochemical properties of LiFePO4/C cathode [J]. Journal of Central South University: Science and Technology, 2006, 37(3): 505-508

[3]

JoongpyoS., KathynA. S.. Cycling performance of low-cost lithium ion batteries with natural graphite and LiFePO4 [J]. Journal of Power Source, 2003, 119/121: 955-958

[4]

BelharouakI., JohrsonC., AmineK.. Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4 [J]. Electrochemistry Communications, 2005, 7(10): 983-988

[5]

StriebelK., ShimJ., SierraA.. The development of low cost LiFePO4-based high power lithium-ion batteries [J]. Journal of Power Source, 2005, 146(1/2): 33-38

[6]

ScacciaS., CarewskaM., WisniewskiP., ProsiniP. P.. Morphological investigation of sub-micron FePO4 and LiFePO4 particles for rechargeable lithium batteries [J]. Materials Research Bulletin, 2003, 38(7): 1155-1163

[7]

YangS. F., ZavalijP. Y., StanleyW. M.. Hydrothermal synthesis of lithium iron phosphate cathodes [J]. Electrochemistry Communication, 2001, 3(9): 505-508

[8]

HuY. Q., DoeffM. M., KosteckiR., FinonesR.. Electrochemical performance of sol-gel synthesized LiFePO4 in lithium batteries [J]. Journal of Electrochemical Society, 2004, 151(8): A1279-A1285

[9]

AmineK., LiuJ., BelharouakI.. High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells [J]. Electrochemistry Communication, 2005, 7(7): 669-673

[10]

SinghalA., SkamdanG., AmatucciG., BadwayF., YeN., ManthiramA., YeH., XuJ. J.. Nanostructured electrodes for next generation rechargeable electrochemical devices [J]. Journal of Power Source, 2004, 129(1): 38-44

[11]

AlanD. S., GirtsV., JohnR. O.. A solution-precursor synthesis of carbon-coated LiFePO4 for Li-ion cells [J]. Journal of Electrochemical Society, 2005, 152(12): A2376-A2382

[12]

HogginsJ. T., SwinneaJ. S., SteinfinkH.. Crystal structure of Fe2P2O7 [J]. Journal of Solid State Chemistry, 1983, 47(3): 278-283

[13]

ParadaC., PerlesJ., Saez-PucheR., Ruiz-ValeroC., SnejkoN.. Crystal growth, structure, and magnetic properties of a new polymorph of Fe2P2O7 [J]. Chemistry Material, 2003, 15(17): 3347-3351

[14]

WuD.-x., WuX.-j., LuY.-f., WangHui.. Synthesis and room temperature conductivity of nano-LaF3 bulk material [J]. Trans Nonferrous Met Soc China, 2006, 16(4): 828-832

[15]

MamoruA., KyojiO.. Effects of the method of preparing iron orthophosphate catalyst on the structure and the catalytic activity [J]. Applied Catalysis A: General, 1999, 180(1/2): 47-52

[16]

ChungS. Y., BlockingJ. T., ChiangY. M.. Electronically conductive phospho-olivines as lithium storage electrodes [J]. Nature Material, 2002, 1(2): 123-128

AI Summary AI Mindmap
PDF

91

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/