Relationship between initial efficiency and structure parameters of carbon anode material for Li-ion battery

Jian-bin Shen , You-gen Tang , Yi-zeng Liang , Xin-xin Tan

Journal of Central South University ›› 2008, Vol. 15 ›› Issue (4) : 484 -487.

PDF
Journal of Central South University ›› 2008, Vol. 15 ›› Issue (4) : 484 -487. DOI: 10.1007/s11771-008-0091-y
Article

Relationship between initial efficiency and structure parameters of carbon anode material for Li-ion battery

Author information +
History +
PDF

Abstract

The initial efficiency is a very important criterion for carbon anode material of Li-ion battery. The relationship between initial efficiency and structure parameters of carbon anode material of Li-ion battery was investigated by an artificial intelligence approach called Random Forests using D10, D50, D90, BET specific surface area and TP density as inputs, initial efficiency as output. The results give good classification performance with 91% accuracy. The variable importance analysis results show the impact of 5 variables on the initial efficiency descends in the order of D90, TP density, BET specific surface area, D50 and D10; smaller D90 and larger TP density have positive impact on initial efficiency. The contribution of BET specific surface area on classification is only 18.74%, which indicates the shortcoming of BET specific surface area as a widely used parameter for initial efficiency evaluation.

Keywords

Li-ion battery / carbon anode material / initial efficiency / structure parameters

Cite this article

Download citation ▾
Jian-bin Shen, You-gen Tang, Yi-zeng Liang, Xin-xin Tan. Relationship between initial efficiency and structure parameters of carbon anode material for Li-ion battery. Journal of Central South University, 2008, 15(4): 484-487 DOI:10.1007/s11771-008-0091-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

PeledE.. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems: The solid electrolyte interphase model[J]. Journal of the Electrochemical Society, 1979, 126(12): 2047-2051

[2]

WuY.-p., DaiX.-b., MaJ.-q., ChenY.-jiang.Li-ion battery-Application and practice[M], 2004, Beijing, Chemical Industry Press

[3]

YuichiS., TakeshiN., KoichiK., TakanobuK., AkiraY.. Particle-size effect of carbon powders on the discharge capacity of lithium ion batteries[J]. Journal of Power Sources, 1998, 75(2): 271-277

[4]

KatiaG., AnnieF., SergeF., MichelC., BernardS., PhilippeB.. Effect of graphite crystal structure on lithium electrochemical intercalation[J]. Journal of Electrochemical Society, 1999, 146(10): 3660-3665

[5]

ZaghibK., NadeauG., KinoshitabK.. Effect of graphite particle size on irreversible capacity loss[J]. Journal of Electrochemical Society, 2000, 147(6): 2110-2115

[6]

ZhouY.-y., LiX.-h., GuoH.-j., WangZ.-x., YangY., XieQ.-ling.. Modification of natural graphite using pitch through dynamical melt-carbonization[J]. Journal of Central South University of Technology, 2007, 14(5): 651-655

[7]

AndrewR. W.WangP., YangP.-l., LuoY.-x.Statistical pattern recognition[M], 20042nd ed.Beijing, Publishing House of Electronic Industry: 178-182

[8]

BreimanL.. Random Forests[J]. Machine Learning, 2001, 45(1): 5-32

[9]

RajarshiG., PeterC. J.. Development of linear, ensemble, and nonlinear models for the prediction and interpretation of the biological activity of a set of PDGFR Inhibitors[J]. J Chem Inf Comput Sci, 2004, 44(6): 2179-2189

[10]

LiS. Q., FedorowiczA., SinghH., SoderholmS. C.. Application of the Random Forest method in studies of local lymph node assay based skin sensitization data[J]. J Chem Inf Model, 2005, 45(4): 952-964

[11]

SvetnikV., WangT., TongC., AndyL., RobertP. S., SongQ. H.. Boosting: An ensemble learning tool for compound classification and QSAR modeling[J]. J Chem Inf Model, 2005, 45(4): 786-799

[12]

NogarajanG. S., VanZ. J. W., SpotnitzR. M.. A mathematical model for intercalation electrode behavior I: Effect of particle-size distribution on discharge capacity[J]. Journal of Electrochemical Society, 1998, 145(3): 771-779

[13]

ZaghibK., SongX., GuerfiA., KostechkiR., KinoshitK.. Effect of particle morphology on lithium intercalation rates in natural graphite[J]. Journal of Power Sources, 2003, 124(2): 505-512

[14]

YangY., PengW.-j., GuoH.-j., WangZ.-x., LiX.-h., ZhouY.-y., LiuY.-jian.. Effects of modification on performance of natural graphite coated by SiO2 for anode of lithium ion butteries[J]. Trans Nonferrous Met Soc China, 2007, 17(6): 1339-1342

[15]

C.-p., ZhaoX.-b., CaoG.-s., ZhuT.-jun.. Effects of graphite on Zn-Sb alloys as anode materials for lithium ion batteries [J]. Trans Nonferrous Met Soc China, 2000, 10(2): 204-208

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/