Effect of catalyst on structure of (PEO)8LiClO4-SiO2 composite polymer electrolyte films

Chun-yue Pan , Qian Zhang , Qing Feng , Jin-huan Gao , You-man Zhao

Journal of Central South University ›› 2008, Vol. 15 ›› Issue (4) : 438 -442.

PDF
Journal of Central South University ›› 2008, Vol. 15 ›› Issue (4) : 438 -442. DOI: 10.1007/s11771-008-0082-z
Article

Effect of catalyst on structure of (PEO)8LiClO4-SiO2 composite polymer electrolyte films

Author information +
History +
PDF

Abstract

(PEO)8LiClO4-SiO2 composite polymer electrolytes(CPEs) were prepared by in-situ reaction, in which ethyl-orthosilicate (TEOS) was catalyzed by HCl and NH3·H2O, respectively. The ionic conductivity, the contact angle and the morphology of inorganic particles in the CPEs were investigated by AC impedance spectra, contact angle method and TEM. The conductivities of acid-catalyzed CPE and alkali-catalyzed CPE are 2.2×10−5 and 1.1×10−5 S/cm respectively at 30 °C. The results imply that the catalyst plays an important role in the structure of in-situ preparation of SiO2, and influences the surface energy and conductivity of CPE films directly. Meanwhile, the ionic conductivity is related to the surface energy.

Keywords

PEO(polyethylene oxide) / SiO2 / composite polymer electrolyte / conductivity / catalytic reaction

Cite this article

Download citation ▾
Chun-yue Pan, Qian Zhang, Qing Feng, Jin-huan Gao, You-man Zhao. Effect of catalyst on structure of (PEO)8LiClO4-SiO2 composite polymer electrolyte films. Journal of Central South University, 2008, 15(4): 438-442 DOI:10.1007/s11771-008-0082-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ScrosatiB.Applications of electroactive polymers[M], 1993, London, Chapman and Hall

[2]

ArmandM. B., ChabagnoJ. M., DuclotM. J.Fast ion transport in solids [M], 1979, Amsterdam, North-Holland

[3]

NookalaM., KumarB., RodriguesS.. Ionic conductivity and ambient temperature Li electrode reaction in composite polymer electrolytes containing nanosize alumina [J]. J Power Sources, 2002, 111(1): 165-172

[4]

WangC., XiaY., KoumotoK., SakaiT.. All solid-state Li/LixMnO2 polymer battery using ceramic modified polymer electrolytes [J]. J Electrochem Soc, 2002, 149(8): A967-A972

[5]

PersiL., CrodeF., ScrosatiB., PlichtaE., HendricksonM. A.. Poly(ethylene oxide)-based nanocomposite electrolytes as improved separators for rechargeable lithium polymer batteries: The Li/LiMn3O6 case [J]. J Electrochem Soc, 2002, 149(2): A212-A216

[6]

LiQ., ImanishiN., TakedaY., HiranoA., YamamotoO.. Four volts class solid lithium polymer batteries with a composite polymer electrolyte [J]. J Power Sources, 2002, 110(1): 38-45

[7]

DigarM., HungS. L., WenT. C.. Blending poly(methyl methacrylate) and poly(styrene-co-acrylonitrile) as composite polymer electrolyte [J]. J Appl Polym Sci, 2001, 80(8): 1319-1328

[8]

WieczorekW., LipkaP., ZukowskaG., WycislikH.. Ionic interactions in polymeric electrolytes based on low molecular weight poly(ethylene glycol)s [J]. J Phys Chem, 1998, 102(36): 6968-6974

[9]

BestA. S., AdebahrJ., JacobssonP., MacfarlaneD. R.. Microscopic interactions in nanocomposite electrolytes [J]. Macromolecules, 2001, 34(13): 4549-4555

[10]

MarcinekM., BacA., LipkaP., ZalewskaA., ZukowskaG., BorkowskaR., WiecaorekW.. Effect of filler surface group on ionic interactions in PEG-LiClO4-Al2O3 composite polyether electrolytes [J]. J Phys Chem, 2000, 104(47): 11088-11093

[11]

CheungI. W., ChinK. B., GreeneE. R., SmartM. C., AbbrentS., GreenbaumS. G., PrakashG. K. S., SurampudiS.. Electrochemical and solid state NMR characterization of composite PEO-based polymer electrolytes [J]. Electrochim Acta, 2003, 48(14/16): 2149-2156

[12]

MeyerW. H.. Polymer electrolytes for lithium-ion batteries [J]. Adv Mater, 1998, 10(6): 439-448

[13]

SadowayD. R., HuangB. Y., TrapaP. E., SooP. P., BannerjeeP., MayesA. M.. Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries [J]. J Power Sources, 2001, 97/98: 621-623

[14]

SooP. P., HuangB. Y., JangY. I., ChiangY. M., SadowayD. R., MayesA. M.. Rubbery block copolymer electrolytes for solid-state rechargeable lithium batteries [J]. J Electrochem Soc, 1999, 146(1): 32-37

[15]

CapiqliaC., MustarelliP., QuartaroneE., TomasiC., MaqistrisA.. Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes [J]. Solid State Ionics, 1999, 118: 73-79

[16]

MoritaM., FujisakiT., YoshimotoN., IshikawaM.. Ionic conductance behavior of polymeric composite solid electrolytes containing lithium aluminate [J]. Electrochim Acta, 2001, 46(10/11): 1565-1569

[17]

SunH. Y., SohnH. J., YamamotoO., TakedaY., ImanishiN.. Enhanced lithium-ion transport in PEO-based composite polymer electrolytes with ferroelectric BaTiO3 [J]. J Electrochem Soc, 1999, 146(5): 1672-1676

[18]

PopallM., AndreiM., KappelJ., KronJ., OimaK., OlsowskiB.. Ormocers as inorganic-organic electrolytes for new solid state lithium batteries and supercapacitors [J]. Electrochim Acta, 1998, 43(10/11): 1155-1161

[19]

KaoH. M., ChenC. L.. An organic-inorganic hybrid electrolyte derived from self-assembly of a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer [J]. Angew Chem, Int Ed, 2004, 43(8): 980-984

[20]

JiangS., YuD., JiX., AnL., JIANGB.. Confined crystallization behavior of PEO in silica networks [J]. Polymer, 2000, 41(6): 2041-2046

[21]

Di NotoV., ZagoV., BiscazzoS., VittadelloM.. Hybrid inorganic-organic polymer electrolytes: Synthesis, FT-Raman studies and conductivity of {Zr[(CH2CH2O)8.7]ρ/(LiClO4)z}n network complexes [J]. Electrochim Acta, 2003, 48(5): 541-554

[22]

UibrichtM., RichauK., KamusewitzH.. Chemically and morphologically defined ultrafiltration membrane surfaces prepared by heterogeneous photo-initiated graft polymerization [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 138(2/3): 353-366

AI Summary AI Mindmap
PDF

92

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/