Synthesis and electrochemical properties of SnO2-polyaniline composite

Ze-qiang He , Li-zhi Xiong , Wen-ping Liu , Xian-ming Wu , Shang Chen , Ke-long Huang

Journal of Central South University ›› 2008, Vol. 15 ›› Issue (2) : 214 -217.

PDF
Journal of Central South University ›› 2008, Vol. 15 ›› Issue (2) : 214 -217. DOI: 10.1007/s11771-008-0041-8
Article

Synthesis and electrochemical properties of SnO2-polyaniline composite

Author information +
History +
PDF

Abstract

The SnO2-polyaniline(SnO2-PAn) composite was prepared by microemulsion polymerization method using aniline, ammonium peroxodisulfate and SnO2 as starting materials. The SnO2-PAn composite was characterized by X-ray diffractometer, scanning electron microscope and electrochemical techniques. The results show that PAn in the composites is amorphous. PAn formed in the reaction is deposited preferentially on the SnO2 particles, giving a SnO2-PAn composite, in which SnO2 is coated with PAn. SnO2-PAn composite shows a reversible capacity of 657.6 mA·h/g and the capacity loss per cycle is only 0.092% after 80 cycles, suggesting that SnO2-PAn composite is a promising anode material for lithium ion batteries.

Keywords

lithium ion battery / synthesis / electrochemical properties / microemulsion polymerization method / SnO2 / polyaniline

Cite this article

Download citation ▾
Ze-qiang He, Li-zhi Xiong, Wen-ping Liu, Xian-ming Wu, Shang Chen, Ke-long Huang. Synthesis and electrochemical properties of SnO2-polyaniline composite. Journal of Central South University, 2008, 15(2): 214-217 DOI:10.1007/s11771-008-0041-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

IdotaY., MatsufujiA., MaekawaY., NiyasakaT.. Tin-based amorphous oxide: A high-capacity lithium-ion-storage material[J]. Science, 1997, 276(5317): 1395-1397

[2]

CourtneyA., DahnJ. R.. Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites[J]. J Electrochem Soc, 1997, 144(6): 2045-2052

[3]

CourtneyA., DahnJ. R.. Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2BPO6 glass[J]. J Electrochem Soc, 1997, 144(9): 2943-2948

[4]

HeZ.-q., LiX.-h., XiongL.-z., WuX.-m., XiaoZ.-b., MaM.-you.. Synthesis and electrochemical properties of tin oxide-based composite by rheological technique[J]. Materials Chemistry & Physics, 2005, 93(2/3): 516-520

[5]

HeZ.-q., XiongL.-z., XiaoZ.-b., MaM.-y., WuX.-ming.. Preparation and electrochemical properties of nano-SnO by sol-gel technique[J]. Chinese Journal of Inorganic Chemistry, 2006, 22(2): 253-257

[6]

YangJ., WinterM., BesenhardJ. O.. Small particle size multiphase Li-alloy anodes for lithium-ion-batteries[J]. Solid State Ionics, 1996, 90(4): 281-287

[7]

BesenhardJ. O., YangJ., WinterM.. Will advanced lithiumalloy anodes have a chance in lithium-ion batteries?[J]. J Power Sources, 1997, 68(1): 87-90

[8]

WinterM., BesenhardJ. O., SpahrM. E., NovakP.. Insertion electrode materials for rechargeable lithium batteries[J]. Adv Mater, 1998, 10(10): 725-763

[9]

LeeJ. Y., ZhangR., LiuZ.. Lithium intercalation and deintercalation reactions in synthetic graphite containing a high dispersion of SnO [J]. Electrochem Solid State Lett, 2000, 3(4): 167-170

[10]

ReadJ., FosterD., WolfenstineJ., BehlW.. SnO2-carbon composites for lithium-ion battery anodes[J]. J Power Sources, 2001, 96(2): 277-281

[11]

MaM.-y., HeZ.-q., XiongL.-z., LiX.-h., XiaoZ.-b., WuX.-b., LiuW.-ping.. Preparation and electrochemical properties of SnO2-graphite composites by homogeneous precipitation technique[J]. The Chinese Journal of Nonferrous Metals, 2005, 15(5): 793-798

[12]

QiZ., WuF.. Nanosized SnO2/graphite composite as negative electrode materials for lithium ion batteries [J]. Chinese Journal of Inorganic Chemistry, 2005, 21(2): 257-260

[13]

BalanL., SchneiderR., WillmannP., BiuaudD.. Tin-graphite materials prepared by reduction of SnCl4 in organic medium: Synthesis, characterization and electrochemical lithiation[J]. J Power Sources, 2006, 161(1): 587-593

[14]

GuoZ. P., WangJ. Z., LiuH. K., DouS. X.. Study of silicon/ polypyrrole composite as anode materials for Li-ion batteries[J]. J Power Sources, 2005, 146(1/2): 448-451

[15]

PasquierA., OrsiniF., GozdzA. S., TarasconJ. M.. Electrochemical behaviour of LiMn2O4-PPy composite cathodes in the 4-V region[J]. J Power Sources, 1999, 81/82(4): 607-611

[16]

VeeraraghavanB., PaulJ., HalaB., PopovB.. Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries[J]. J Power Sources, 2002, 109(2): 377-387

[17]

ZhangX.-wu., WangC.-s., ApplebyA. J., LittlF. E.. Improvement in electrochemical properties of nano-tin-polyaniline lithium-ion composite anodes by control of electrode microstructure[J]. J Power Sources, 2003, 109(1): 136-141

[18]

SchnitzlerD. C., MeruviaM. S., HummelgenI. A., ZarbinA. J. G.. Preparation and characterization of novel hybrid materials formed from (Ti, Sn)O2 nanoparticles and polyaniline[J]. Chem Mater, 2003, 15(24): 4658-4665

[19]

HeZ.-q., XiongL.-z., MaM.-y., XiaoZ.-b., WuX.-ming.. Synthesis and characterization of nanometer SnO2 by non-hydrolytic sol-gel approach [J]. Chinese Journal of Inorganic Chemistry, 2005, 21(11): 1691-1696

[20]

ShengY., ChenJ.-d., ZhuD.-qin.. In-situ chemical synthesis and characterization of conducting polyaniline/manganese dioxide composites[J]. Acta Materiae Compositae Sinica, 2004, 21(4): 1-7

[21]

FuL. J., LiuH., ZhangH. P., LiC., ZhangT., WuY. P., HolzeR., WuH. Q.. Synthesis and electrochemical performance of novel core/shell structured nanocomposites[J]. Electrochemistry Communications, 2006, 8(1): 1-4

[22]

HeZ.-q., LiX.-h., WuX.-m., HouZ.-h., LiuE.-h., DengL.-f., HuC.-y., TianH.-peng.. Preparation and electrochemical properties of nanosized tin dioxide electrode material by sol-gel process[J]. Trans Nonferrous Met Soc China, 2003, 13(4): 998-1002

[23]

HeZ.-q., LiX.-h., XiongL.-z., LiuE.-h., HouZ.-h., WuX.-m., DengL.-feng.. Soft chemical synthesis and electrochemical properties of tin oxide-based materials as anodes for lithium ion batteries[J]. J Cent South Univ Technol, 2004, 11(2): 142-146

[24]

HeZ.-q., XiongL.-z., XiaoZ.-b., MaM.-y., WuX.-ming.. Electrochemical properties of novel calcium stannate anode for lithium ion batteries[J]. Trans Nonferrous Met Soc China, 2005, 15(6): 1420-1424

[25]

MacdonaldJ. R.Impedance spectroscopy[M], 1987, New York, John Wiley & Sons: 69

[26]

AurbachD., Ein-eliY., ChusidO., CarmeliY., BabaiM., YaminH.. The correlation between the surface chemistry and the performance of Li-carbon intercalation anodes for rechargeable ‘Rocking-Chair’ type batteries[J]. J Electrochem Soc, 1994, 141(3): 603-610

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/