Influence of crystallographic orientation on growth behavior of spherical voids

Xin-ming Zhang , Wen-hui Liu , Jian-guo Tang , Ling-ying Ye

Journal of Central South University ›› 2008, Vol. 15 ›› Issue (2) : 159 -164.

PDF
Journal of Central South University ›› 2008, Vol. 15 ›› Issue (2) : 159 -164. DOI: 10.1007/s11771-008-0031-x
Article

Influence of crystallographic orientation on growth behavior of spherical voids

Author information +
History +
PDF

Abstract

The influence of crystallographic orientation on the void growth in FCC crystals was numerically simulated with 3D crystal plasticity finite element by using a 3D unit cell including a spherical void, and the rate-dependent crystal plasticity theory was implemented as a user material subroutine. The results of the simulations show that crystallographic orientation has significant influence on the growth behavior of the void. Different active slip systems of the regions around the void cause the discontinuity in lattice rotation around the void, and the corner-like region is formed. In the case of the void located at grain boundary, large heterogeneous deformation occurs between the two grains, and the equivalent plastic deformation along grain boundary near the void in the case of ϑ=45° (ϑ is the angle between grain boundary direction and X-axis) is larger than the others. Large difference of orientation factor of the two grains leads to large equivalent plastic deformation along grain boundary, and the unit cell is more likely to fail by intergranular fracture.

Keywords

crystallographic orientation / void growth / crystal plasticity / user subroutine / finite element method

Cite this article

Download citation ▾
Xin-ming Zhang, Wen-hui Liu, Jian-guo Tang, Ling-ying Ye. Influence of crystallographic orientation on growth behavior of spherical voids. Journal of Central South University, 2008, 15(2): 159-164 DOI:10.1007/s11771-008-0031-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

McclintockF. A.. A criterion for ductile fracture by the growth of holes[J]. J App Mech, 1968, 35(3): 363-371

[2]

RiceJ. R., TraceyD. M.. On the ductile enlargement of voids in triaxial stress fields[J]. J Mech Phys Solids, 1969, 17(1): 201-217

[3]

GursonA. L.. Continuum theory of ductile rupture by void nucleation and growth (Part I): Yield criteria and flow rules for porous ductile media[J]. J Eng Mat Tech, 1977, 99: 2-15

[4]

TvergaardV.. Influence of voids on shear band instabilities under plane strain condition[J]. Int J Fracture, 1981, 17(4): 389-407

[5]

TvergaadV.. On localization in ductile materials containing voids[J]. Int J Fracture, 1982, 18(4): 237-252

[6]

TvergaadV., NeedleA.. Analysis of the cup-cone fracture in a round bar[J]. Acta Metallurgica, 1984, 32(1): 157-169

[7]

DieterG. E.Mechanical metallurgy[M], 1986, New York, McGraw-Hill

[8]

QiW., BertramA.. Anisotropic continuum damage modeling for single crystals at high temperature[J]. Int J Plasticity, 1999, 15(12): 1197-1215

[9]

ShuJ. Y.. Scale dependent deformation of porous single crystals[J]. Int J Plasticity, 1998, 14(10/11): 1085-1107

[10]

OrsiniV. C., ZikryM. A.. Void growth and interaction in crystalline materials[J]. Int J Plasticity, 2001, 17(10): 1393-1417

[11]

O’ReganT. L., QuinnD. F., HoweM. A., MchughP. E., MchughP. E.. Void growth simulations in single crystals[J]. Comput Mech, 1997, 20(1/2): 115-121

[12]

HorstemeyerM. F., BaskesM. I., GodfreyA.. A large deformation atomistic study examining crystal orientation effects on the stress strain relationship[J]. Int J Plasticity, 2002, 18(2): 203-229

[13]

KysarJ. W., GanY. X., ArauzaM.. Cylindrical void in a rigid-ideally plastic single crystal. Part I: Anisotropic slip line theory solution for face-centered cubic crystals[J]. Int J Plasticity, 2005, 21(8): 1481-1520

[14]

GanY. X., KysarJ. W., MorseT. L.. Cylindrical void in a rigid-ideally plastic single crystal (II): Experiments and simulations[J]. Int J Plasticity, 2006, 22(1): 39-72

[15]

PotirnicheG. P., HeamdonJ. L., HorstemeyerM. F., LingX. W.. Lattice orientation effects on void growth and coalescence in fcc single crystals[J]. Int J Plasticity, 2006, 22(6): 921-942

[16]

LiuW. H., ZhangX. M., TangJ. G., DuY. X.. Simulation of void growth and coalescence behavior with 3D crystal plasticity theory[J]. Comput Mater Sci, 2007, 40(1): 130-139

[17]

AnandL., KothariM.. A computational procedure for rate-independent crystal plasticity[J]. J Mech Phys Solids, 1996, 44(4): 525-558

[18]

TangJ. G., ZhangX. M., ChenZ. Y., DengY. L.. Simulation influence of inhomogeneous deformation on the development of rolling textures with crystal plasticity finite element[J]. J Cent South University, 2006, 13(2): 117-121

[19]

Nemat-nasserS., OkinakaT., NesterenkoV., LiuM.. Dynamic void collapse in crystals: computational modelling and experiments[J]. Philos Mag A, 1998, 78(5): 1151-1174

[20]

SolankiK., HorstemeyerM. F., BaskesM. I.. Multiscale study of dynamic void collapse in single crystals[J]. Mech Mater, 2005, 37(2/3): 317-330

[21]

TakeshiK., OsamuI.. Ductile fracture in the interior of precipitate free zone in an Al-6.0%Zn-2.6%Mg alloy[J]. Acta Metall, 1976, 24: 817-825

[22]

MichaelG., ErhardH.. Observation of ductile intercrystalline fracture of an Al-Zn-Mg-alloy[J]. Acta Metall, 1977, 25: 883-889

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/