Interfacial interaction of bio-leaching of pyrite mineral

Guo-hua Gu , Hui Wang , Jun Suo , Guan-zhou Qiu , Ye Hao

Journal of Central South University ›› 2008, Vol. 15 ›› Issue (1) : 49 -53.

PDF
Journal of Central South University ›› 2008, Vol. 15 ›› Issue (1) : 49 -53. DOI: 10.1007/s11771-008-0011-1
Article

Interfacial interaction of bio-leaching of pyrite mineral

Author information +
History +
PDF

Abstract

Electrokinetic and contact angle measurements were used to discuss the interfacial interaction on bio-leaching of pyrite mineral. Surface energy parameters of pyrite mineral and thiobacillus ferrooxidans were obtained by calculating according to formula of Young’s equation and contact angle measurements. The results show that surface energy of thiobacillus ferrooxidans is much higher than that of pyrite mineral, and the reaction of pyrite mineral with thiobacillus ferrooxidans causes the reduction of the pyrite surface energy. The interfacial interaction energies between pyrite mineral and thiobacillus ferrooxidans were also obtained based on polar interfacial interaction theory and electrokinetic and contact angle measurements. The thermodynamics approach only considering Lifshitz-van der Waals and Lewis acid-base interaction fails to explain the adhesion behavior of the bacteria, but the extended Derjaguin-Landan-Verwey-Overbeek theory concerning Lifshitz-van der Waals and Lewis acid-base and the electrostatic can exactly predict interfacial interaction.

Keywords

extended DLVO theory / surface energy / thiobacillus ferrooxidans / pyrite / contact angle

Cite this article

Download citation ▾
Guo-hua Gu, Hui Wang, Jun Suo, Guan-zhou Qiu, Ye Hao. Interfacial interaction of bio-leaching of pyrite mineral. Journal of Central South University, 2008, 15(1): 49-53 DOI:10.1007/s11771-008-0011-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SilvermanM. P., EhrlichH. L.. Microbial formation and degradation of metals[J]. Adv Appl Microbiol, 1964, 6: 153-206

[2]

TributschH., Rojas-ChapanaJ. A.. Metal sulfide semiconductor electrochemical mechanisms induced by bacterial activity[J]. Electrochimica Acta, 2000, 45(28): 4705-4716

[3]

TributschH.. Direct versus indirect bioleaching[J]. Hydrometallurgy, 2001, 59: 177-185

[4]

JanczukB., BruqueJ. M., González-MartínM. L., Román-GalánE.. The contribution of double layers to the free energy of interactions in the cassiterite-SDS solution system[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 100: 93-103

[5]

SharmaP. K., Hanumantha-RaoK.. Adhesion of Paenibacillus polymyxa on chalcopyrite and pyrite: Surface thermodynamics and extended DLVO theory[J]. Colloids and Surfaces B: Biointerfaces, 2003, 29(1): 21-38

[6]

HermanssonM.. The DLVO theory in microbial adhesion[J]. Colloids and Surfaces B: Biointerfaces, 1999, 14(1/4): 105-119

[7]

Shalel-LevanonS., MarmurA.. Validity and accuracy in evaluating surface tension of solids by additive approaches[J]. Journal of Colloid and Interface Science, 2003, 262(2): 489-499

[8]

JanczukB., González-MartínM. L., BruqueJ. M.. The influence of sodium dodecyl sulfate on the surface free energy of cassiterite[J]. Journal of Colloid and Interface Science, 1995, 170(2): 383-391

[9]

van OssC. J., ChaudhuryM. K., GoodR. J.. Mechanism of partition in aqueous media[J]. Separation Science and Technology, 1987, 22(6): 1515-1526

[10]

van OssC. J., GoodR. J., ChaudhuryM. K.. Estimation of the polar surface tension parameters of glycerol and formamide, for use in contact angle measurements on polar solids[J]. Journal of Dispersion Science and Technology, 1990, 11(1): 75-81

[11]

LeónV., TusaA., AraujoY. C.. Determination of the solid surface tensions: I. The platinum case[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 155(2/3): 131-136

[12]

AdãoM. H. V. C., SaramagoB. J. V., FernandesA. C.. Estimation of the surface properties of styrene-acrylonitrile random copolymers from contact angle measurements[J]. Journal of Colloid and Interface Science, 1999, 217(1): 94-106

[13]

ParkS. J., KimJ. S.. Influence of plasma treatment on microstructures and acid-base surface energetics of nanostructured carbon blacks: N2 plasma environment[J]. Journal of Colloid and Interface Science, 2001, 244(2): 336-341

[14]

Espinosa-JiménezM., Ontiveros-OrtegaA., Giménez-MartínE.. Surface energetics of the adsorption process of a cationic dye on leacril fabrics[J]. Journal of Colloid and Interface Science, 1997, 194(2): 419-426

[15]

Espinosa-JiménezM., Giménez-MartínE., Ontiveros-OrtegaA.. Effect of tannic acid on the ζ potential, sorption, and surface free energy in the process of dyeing of leacril with a cationic dye[J]. Journal of Colloid and Interface Science, 1998, 207(1): 170-179

[16]

WuW., GieseR. F., van OssC. J.. Stability versus flocculation of particle suspensions in water—correlation with the extended DLVO approach for aqueous systems, compared with classical DLVO theory[J]. Colloids and Surfaces B: Biointerfaces, 1999, 14(1/4): 47-55

[17]

YangC., DabrosT., LiD. Q., CzarneckiJ., MasliyahJ. H.. Analysis of fine bubble attachment onto a solid surface within the framework of classical DLVO theory[J]. Journal of Colloid and Interface Science, 1999, 219(1): 69-80

[18]

PoortingaA. T., BosR., NordeW., BusscherH. J.. Electric double layer interactions in bacterial adhesion to surfaces[J]. Surface Science Reports, 2002, 47(5): 1-32

[19]

OliveiraR.. Understanding adhesion: A means for preventing fouling[J]. Thermo Fluid Sci, 1997, 14(4): 316-322

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/