Resistance optimization of flexes in aluminum reduction cells

Jie Li , Jie Liu , Wei Liu , Yan-qing Lai , Zhi-gang Wang , Yu-yun Wu

Journal of Central South University ›› 2008, Vol. 15 ›› Issue (1) : 20 -24.

PDF
Journal of Central South University ›› 2008, Vol. 15 ›› Issue (1) : 20 -24. DOI: 10.1007/s11771-008-0005-z
Article

Resistance optimization of flexes in aluminum reduction cells

Author information +
History +
PDF

Abstract

The resistance arrangements of the flexes connecting with the cathode bus bar in aluminum reduction cells were generalized as three modes. In each mode the universal method to select proper resistivity of the flexes was induced respectively to insure that the current in local group of flexes was equal. Furthermore, a 350 kA aluminum reduction cell based electric field model was developed by finite element method to evaluate the effect of the method. Suggestions on selection of three modes were also put forward. The results show that the methods of resistance optimization can reduce the current variation about 180 A compared with that in original case.

Keywords

bus bar design / aluminum reduction cell / electric field / finite element method

Cite this article

Download citation ▾
Jie Li, Jie Liu, Wei Liu, Yan-qing Lai, Zhi-gang Wang, Yu-yun Wu. Resistance optimization of flexes in aluminum reduction cells. Journal of Central South University, 2008, 15(1): 20-24 DOI:10.1007/s11771-008-0005-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZhouN.-j., XiaX.-x., WangF.-qiang.. Numerical simulation on electrolyte flow field in 156 kA drained aluminum reduction cells[J]. Journal of Central South University of Technology, 2007, 14(1): 42-46

[2]

LiuW., LiJ., LaiY.-q., LiuY.-xiang.. 2D finite element analysis of thermal balance for drained aluminum reduction cells[J]. Journal of Central South University of Technology, 2007, 14(6): 783-787

[3]

TvedtT., NebellH. G.. Newbus, a simulation program for calculation of the current distribution in the bus bar system of alumina reduction cells[C]// BOXALL L G. Light Metals 1988, 1988, Phoenix, Arizona, TMS: 567-573

[4]

BuizaJ. I.Electromagnetic optimization of the V-350 cell[C]// CAMPBELL P G. Light Metals 1989, 1989, Las Vegas, Nevada, TMS: 211-214

[5]

YaoS.-h., HeZ.-hui.. Selection of bus bar optimum section in high amperage reduction cells[C]// Bickert C M. Light Metals 1990, 1990, Anaheim, California, TMS: 453-458

[6]

SeveroD. S., SchneiderA. F., PintoE. C. V., GusbertiV., PotocnikV.. Modeling magnetohydrodynamics of aluminum electrolysis cells with ANSYS and CFX[C]// KVANDE H. Light Metals 2005, 2005, San Francisco, California, TMS: 475-480

[7]

DupuisM., BojarevicsV., FreibergsJ.. Demonstration of thermo-electric and MHD mathematical models of a 500 kA Al electrolysis cell: Part 2[C]// ALTON T T. Light Metals 2004, 2004, Charlotte, North Carolina, TMS: 453-459

[8]

DupuisM., BojarevicsV.. Weakly coupled thermo-electric and MHD mathematical models of an aluminium electrolysis cell[C]// KVANDE H. Light Metals 2005, 2005, San Francisco, California, TMS: 449-454

[9]

KacprzakD., GustafssonM. J., TaylorM. P.. A finite element analysis of busbars and magnetic field of an aluminum reduction cell[J]. IEEE Transactions on Magnetics, 2006, 42(10): 3192-3194

[10]

DupuisM.. Using ANSYS to model aluminum reduction cell since 1984 and beyond[C]// PETERSON R D. Light Metals 2000, 2000, Nashville, Tennessee, TMS: 307-313

[11]

ZhouN.-j., MeiC., JiangC.-w., ZhouP., LiJie.. Coupled computation method of physics fields in aluminum reduction cells[J]. Transactions of Nonferrous Metals Society of China, 2003, 13(4): 431-437

[12]

LiJ., ChengY.-j., LaiY.-q., ZhouN.-jun.. Numerical simulation of current and temperature fields of aluminum reduction cells based on ANSYS[J]. Chinese Journal of Computation Physics, 2003, 20(4): 351-355(in Chinese)

[13]

YangY., LiL.-ru.. Magnetic field analysis of large aluminum reduction cell by using finite element method[J]. Nonferrous Metals, 2002, 8(3): 66-69(in Chinese)

[14]

JiangC.-w., MeiC., ZhouN.-j., XuS.-sheng.. Computation of 3-D magnetic field in prebaked cells using scalar voltage potential method and two scalar magnetic potentials method[J]. The Chinese Journal of Nonferrous Metals, 2003, 13(4): 1021-1025(in Chinese)

[15]

LiuH.-s., LiJ., LiC.-m., ZhangQ.-s., LiuW.. Influence of different kinds of cathode carbon blocks on cathode thermal-field distribution in preheating process[J]. Journal of Central South University: Science and Technology, 2006, 37(1): 36-40(in Chinese)

[16]

WuJ.-k., HuangM., HuangJ., YaoS.-huan.. Computation of flow field of electrolyte-aluminium liquid and surface distortion of aluminum liquid in reduction cell[J]. The Chinese Journal of Nonferrous Metals, 2003, 13(1): 241-244(in Chinese)

[17]

DupuisM., BojarevicsV.. Busbar sizing modeling tools: Comparing an ANSYS based 3D model with the versatile 1D model part of MHD-Valdis[C]// GALLOWAY T J. Light Metals, 2006, San Antonio, Texas, TMS: 341-346

[18]

KacprzakD., GustafssonM. J., LiL., TaylorM.. Numerical analysis of the collector bar current distribution of a reduction cell[C]// GALLOWAY T J. Light Metals 2006, 2006, San Antonio, Texas, TMS: 367-369

AI Summary AI Mindmap
PDF

93

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/