Rheologic fracture of PMMA material at different strain rates

Ying Sun

Journal of Central South University ›› 2007, Vol. 14 ›› Issue (Suppl 1) : 342 -345.

PDF
Journal of Central South University ›› 2007, Vol. 14 ›› Issue (Suppl 1) : 342 -345. DOI: 10.1007/s11771-007-0278-7
Article

Rheologic fracture of PMMA material at different strain rates

Author information +
History +
PDF

Abstract

Polymethyl methacrylate(PMMA) is a kind of typical viscoelastic polymer materials, whose deformation and rheologic fracture are related not only with time and temperature, but also with strain rate on loading. By the quasi-static uniaxial tension test at defferent loading rates, the strain-rate-dependent stress-time equation of PMMA material was gotten with H-K mode. In the range of given strain rates, tes, E2(

\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\dot \varepsilon $$\end{document}
) is almost not varied with strain rate, but E1(
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\dot \varepsilon $$\end{document}
) and η1(
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\dot \varepsilon $$\end{document}
) augment with strain rate reducing, which shows that viscosity of PMMA material responds more strongly; whereas, they reduce with strain rate increasing, which shows that the viscosity of PMMA material responds more feebly; when the strain rate is added up to infinite, E1(
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\dot \varepsilon $$\end{document}
) goes to constant and η1(
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\dot \varepsilon $$\end{document}
) to naught, which shows that PMMA material responds elasticity by constitutive mode. Based on the theory of continuum mechanics, median stress is defined as the ratio of fracture strain energy density to fracture strain, according to the energy conservation law and Cauchy median law. The median stress of PMMA is not related with strain rate in the range of the given strain rates, so it is represented as a parameter to scale the fracture of PMMA.

Keywords

strain rate / elastic modulus / viscosity / fracture strain energy density / median stress

Cite this article

Download citation ▾
Ying Sun. Rheologic fracture of PMMA material at different strain rates. Journal of Central South University, 2007, 14(Suppl 1): 342-345 DOI:10.1007/s11771-007-0278-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LuX.-ci.Macromolecular Materials Strength and Destruction[M], 1988, Chengdu, Sichuan Education Press

[2]

NARISAWA I, YEE A F. Crazing and fracture of polymers[C]// Thomas E L ed. Structure and Properties of Polymers, Materials Science and Technology, A comprehensive Treatment. 1993, 12: 698–765.

[3]

LuoW.-b., YangT.-q., ZhangP.. An extensive on meso-damage evolution in polymers[J]. Advances in Mechanics, 2001, 31(2): 264-275

[4]

GillemotL. F.. Criterionof crack ignition and spreading[J]. Engng Fract Mech, 1976, 8: 239-253

[5]

KauschH. H.. Crazing in polymers[M]. Advances in Polymer Science 91/92, 1990, Berlin, Springer-Verlag

[6]

YuJ., JinZ.-h., ZhouH.-jiu.. Initiation mechanism and criterion of craze[J]. Polymer Material Science and Engineering, 1997, 13: 98-103

[7]

ShaY., HuiC. Y., RuinaA., et al.. Detailed simulation of craze fibril failure at a crack tip in a glassy polymer[J]. Acta Mater, 1997, 45(9): 3555-3563

[8]

ZhangC.-yuan.Viscoelastic Rupture Mechanics[M], 1994, Wuhan, Huazhong University of Science and Technology Press

[9]

LiQ. M.. Strain energy density failure criterion[J]. International Journal of Solids and Structures, 2001, 38: 6997-7013

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/