Nonlinear effects (discontinuties) in rheology

D. De Kee

Journal of Central South University ›› 2007, Vol. 14 ›› Issue (Suppl 1) : 242 -245.

PDF
Journal of Central South University ›› 2007, Vol. 14 ›› Issue (Suppl 1) :242 -245. DOI: 10.1007/s11771-007-0254-2
Article

Nonlinear effects (discontinuties) in rheology

Author information +
History +
PDF

Abstract

Several rheological phenomena involve discontinuities of some sort. Three of such non-linear effects were discussed in this contribution. The yield stress in suspensions, the bubble volume-velocity jump in multiphase systems and the stress jump in viscoelastic liquids were all considered.

Keywords

yield stress / bubble dynamics / stress jump

Cite this article

Download citation ▾
D. De Kee. Nonlinear effects (discontinuties) in rheology. Journal of Central South University, 2007, 14(Suppl 1): 242-245 DOI:10.1007/s11771-007-0254-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BarnesH. A.J Non-Newtonian Fluid Mech, 1999, 81: 133-178

[2]

KeentokM.Rheol Acta, 1982, 21: 325-332

[3]

JamesA. E., WilliamsD. J. A., WilliamsP. R.Rheol Acta, 1987, 26: 437-446

[4]

NguyenD. Q., BogerD. V.J Rheol, 1983, 27: 321-349

[5]

NguyenQ. D., BogerD. V.J Rheol, 1985, 29: 335-347

[6]

LiddellP. V., BogerD. V.J Non-Newtonian Fluid Mech, 1996, 63: 235-261

[7]

De KeeD., TurcotteG., FildeyK., et al.J Texture Stud, 1980, 10: 281-288

[8]

De KeeD., MohanP., SoongD. S.J Macromol Sci Phys, 1986, 25: 153-169

[9]

De KeeD., ChhabraR. P.Rheol Acta, 1994, 33: 238-240

[10]

AstaritaG., ApuzzoG.AIChE J, 1965, 11: 815

[11]

LealL. G., SkookJ., AcrivosA.Can J Chem Eng, 1971, 49: 569

[12]

AcharyaA., MashelkarR., UlbrechtJ.Chem Eng Sci, 1977, 32: 813

[13]

HaqueM. W., NigamK. D. P., ViswanathanK., et al.Chem Eng Commun, 1988, 73: 31

[14]

MacedoI. C., YangW. J.Jpn J Appl Phys, 1974, 13: 529

[15]

De KeeD., CarreauP. J., MordarskiChem Eng Sci, 1986, 41: 2273

[16]

De KeeD., ChhabraR. P., DajanA.J Non-Newtonian Fluid Mech, 1990, 37: 1

[17]

MiyaharaT., YamanakaS.J Chem Eng Jpn, 1993, 26: 297

[18]

RodrigueD., De KeeD., Chan Man FongC. F.J Non-Newtonian Fluid Mech, 1996, 66: 213

[19]

DE KEE D, RODRIGUE D, CHAN MAN FONG C F. AMD-Rheology and fluid mechanics of nonlinear materials [M]. Advani, 1996: 37.

[20]

RodrigueD., De KeeD.Transport processes in bubbles, drops and particles [M], 2002, New York, Taylor and Francis

[21]

LiuY. J., LiaoT. Y., JosephD. D.J Fluid Mech, 1995, 304: 321

[22]

HassagerO.Nature, 1979, 279: 402

[23]

RODRIGUE D, BLANCHET F. Proc XIVth Int Congr on Rheology, Seoul, 2004.

[24]

De KeeD., CarreauP. J.. A constitutive equation derived from Lodge’s network theory [J]. J Non-Newtonian Fluid Mech, 1979, 6: 127-143

[25]

LiangC. H., MackayM. E.. The stress jump of a semirigid macromolecule after shear: Steady-state results [J]. J Rheol, 1993, 37: 149-174

[26]

BirdR. B., SaabH. H., CurtissC. F.. A kinetic theory for polymer melts (3): Elongational flows [J]. J Phys Chem, 1982, 86: 1102-1106

[27]

MankeC. W., WilliamsM. C.. Stress jump predicted by the internal viscosity model with hydrodynamic interaction [J]. J Rheol, 1992, 36: 1261-1274

[28]

RemmelgasJ., LealL. G., OrrN., et al.J Non-Newt Fluid Mech, 1998, 76: 111-135

[29]

OrrN. V., SridharT.. Stress relaxation in uniaxial extension [J]. J Non-Newtonian Fluid Mech, 1996, 67: 77-103

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/