Nonlinear boundary slip of fluid flowing over solid surface

Ping Zhou , Cheng-wei Wu , Guo-jun Ma

Journal of Central South University ›› 2007, Vol. 14 ›› Issue (Suppl 1) : 30 -33.

PDF
Journal of Central South University ›› 2007, Vol. 14 ›› Issue (Suppl 1) : 30 -33. DOI: 10.1007/s11771-007-0208-8
Article

Nonlinear boundary slip of fluid flowing over solid surface

Author information +
History +
PDF

Abstract

A general nonlinear slip of fluid flow at a solid surface is proposed in the present paper. The theoretical prediction shows that the slip length keeps as a constant (an initial slip length) at a small shear rate, then increases with the shear rate, and finally is approximately proportional to the slip velocity at a high shear rate. The nonlinear slips occurring at both of the simple flow in a parallel sliding system and a complex flow between two approaching spheres are investigated. It is found that the initial slip length controls the slip behavior at a small shear rate, but a critical shear rate controls the boundary slip at the high shear rate. Our theoretical predictions are in well agreement with the experimental measurements of boundary slips for both a simple fluid and a complex fluid.

Keywords

boundary slip / fluid flow / slip velocity

Cite this article

Download citation ▾
Ping Zhou, Cheng-wei Wu, Guo-jun Ma. Nonlinear boundary slip of fluid flowing over solid surface. Journal of Central South University, 2007, 14(Suppl 1): 30-33 DOI:10.1007/s11771-007-0208-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LambH.Hydrodynamics[M], 1932, New York, Dover

[2]

FaberT.Fluid Dynamics for physicists[M], 1995, Cambridge, Cambridge University Press

[3]

ChuraevN. V., SobolevV. D., SomovN.. Slippage of liquids over lyophobic solid surfaces[J]. J Colloid Interface Sci, 1984, 97(2): 574-581

[4]

PitR., HervetH., LegerL.. Friction and slip of a simple liquid at a solid surface[J]. Tribol Lett, 1999, 7(2–3): 147-152

[5]

PitR., HervetH., LegerL.. Direct experimental evidence of slip in hexadecane: solid interfaces[J]. Phys Rev Lett, 2000, 85(5): 980-983

[6]

BonaccursoE., KapplM., ButtH. J.. Hydrodynamic force measurements: boundary slip of hydrophilic surfaces and electrokinetic effects[J]. Phys Rev Lett, 2002, 88(7): 076103/1-4

[7]

CraigV. S. J., NetoC., WilliamsD. R. M.. Shear-dependent boundary slip in an aqueous newtonian liquid[J]. Phys Rev Lett, 2001, 87(5): 054504/1-4

[8]

BonaccursoE., ButtH. J., CraigV. S. J.. Surface roughness and hydrodynamic boundary slip of a newtonian fluid in a completely wetting system[J]. Phys Rev Lett, 2003, 90(14): 144501/1-4

[9]

ZhuY. X., GranickS.. Rate-dependent slip of newtonian liquid at smooth surfaces[J]. Phys Rev Lett, 2001, 87(9): 096105/1-4

[10]

ZhuY. X., GranickS.. Limits of the hydrodynamic no-Slip boundary condition[J]. Phys Rev Lett, 2002, 88(10): 106102/1-4

[11]

HervetH., LeferL.. Flow with slip at the wall:from simple to complex liquids[J]. L C R Physique, 2003, 4(2): 241-249

[12]

KoplikJ., BanavarJ. R., WillemsenJ. F.. Molecular dynamics of fluid at solid surfaces[J]. Phys Fluids A, 1989, 1(5): 781-794

[13]

SunM., WdnerC.. Molecular dynamics study of flow at a fluid-wall interface[J]. Phys Rev Lett, 1992, 69(24): 3491-3494

[14]

ThompsonP. A., TroianS. M.. A general boundary condition for liquid flow at solid surfaces[J]. Nature, 1997, 389(6649): 360-362

[15]

NavierM.Memoire sur le lois du mouvement des fluids[J]. Mem Acad Roy Sci Paris, 1823, 6: 389-416

[16]

MaxwellJ. C.. On stress in rarefied gases arising from inequalities of temperature[J]. Philos Trans R Soc Part I, 1879, 2(2): 231-256

[17]

WhiteF. M.Viscous Fluid Flow[S], 1974, New York, McGraw-Hill Book Company

[18]

WuC.-w., ZhongW.-x., QianL.-x., et al.. Parametric variational principle of viscoplastic lubrication model[J]. ASME Ser F, J Tribol, 1992, 114(4): 731-735

[19]

StahlJ., JacobsonB. O.. A lubricant model considering wall-slip in EHL line contacts[J]. ASME J Tribology, 2003, 125(3): 523-532

[20]

PriezjevN. V., TroianS. M.. Molecular origin and dynamic behavior of slip in sheared polymer films[J]. Phys Rev Lett, 2004, 92(1): 018302/1-4

[21]

VinogradovaO. I.. Drainage of a thin liquid film confined between hydrophobic surfaces[J]. Langmuir, 1995, 11(6): 2213-2220

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/