Extensional flows of polymer solutions in microfluidic converging/diverging geometries

Gareth H. McKinley , Lucy E. Rodd , Mónica S. N. Oliverira , Justin Cooper-White

Journal of Central South University ›› 2007, Vol. 14 ›› Issue (Suppl 1) : 6 -9.

PDF
Journal of Central South University ›› 2007, Vol. 14 ›› Issue (Suppl 1) : 6 -9. DOI: 10.1007/s11771-007-0202-1
Article

Extensional flows of polymer solutions in microfluidic converging/diverging geometries

Author information +
History +
PDF

Abstract

The effects of fluid elasticity in the flow of non-Newtonian fluids in microfluidic converging/diverging geometries are investigated. We investigate the structure and dynamics of inertio-elastic flow instabilities and elastic corner vortices which develop upstream of the contraction plane, and explore their dependence on the relative magnitudes of inertia and elastic stress generated by the high deformation rates in the contraction geometry. The results show that the shape, size and evolution of these flow structures varies with the elasticity number, which is independent of the flow kinematics and is only dependent on fluid properties (viscosity, density and polymer relaxation time) and the characteristic size of the channel.

Keywords

extensional rheology / microfluidic / extra pressure drop / PEO / Couette correction

Cite this article

Download citation ▾
Gareth H. McKinley, Lucy E. Rodd, Mónica S. N. Oliverira, Justin Cooper-White. Extensional flows of polymer solutions in microfluidic converging/diverging geometries. Journal of Central South University, 2007, 14(Suppl 1): 6-9 DOI:10.1007/s11771-007-0202-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SquiresT. M., QuakeS. R.. Microfluidics: fluid physics at the nanoliter scale[J]. Rev Mod Phys, 2005, 77(3): 977-1026

[2]

RoddL. E., ScottT. P., BogerD. V., et al. . Planar entry flow of low viscosity elastic fluids in micro-fabricated geometries[J]. J Non-Newt Fluid Mech, 2005, 129(1): 1-22

[3]

QuakeS. R., SchererA.. From micro-to nanofabrication with soft materials[J]. Science, 2000, 290(5496): 1536-1540

[4]

RothsteinJ. P., MckinleyG. H.. The axisymmetric contraction-expansion: the role of extensional rheology on vortex growth dynamics and the enhanced pressure drop[J]. J Non-Newt Fluid Mech, 2001, 98(1): 33-63

[5]

JamesD. F., SaringerJ. H.. Extensional flow of dilute polymer solutions[J]. J Fluid Mech, 1980, 97(4): 655-671

[6]

RoddL. E., ScottT. P., Cooper-WhiteJ. J., et al. . Capillary breakup rheometry of low-viscosity elastic fluids[J]. Appl Rheol, 2005, 15(1): 12-27

[7]

MeinhartC. D., WereleyS. T., GrayM. H. B.. Volume illumination for two-dimensional particle image velocimetry[J]. Meas Sci Tech, 2000, 11(6): 809-814

[8]

HulsenM. A.. Numerical simulation of the diverging flow in a circular contraction of a viscoelastic fluid[J]. Theor Comput Fluid Dyn, 1993, 5(1): 33-48

[9]

JamesD. F., ChandlerG. M., ArmourS. J.. A Converging channel rheometer for the measurement of extensional viscosity[J]. J Non-Newt Fluid Mech, 1990, 35(2/3): 421-443

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/